IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics136403212301033x.html
   My bibliography  Save this article

Meteorological drought effect for Central Europe's hydropower potential

Author

Listed:
  • Młyński, Dariusz
  • Książek, Leszek
  • Bogdał, Andrzej

Abstract

The aim of the study was the assessment of the impact of meteorological drought on the hydropower potential of selected Central European rivers. The main novelty of conducted study was find answer for question, how strong this kind of drought affecting on rivers hydropower potential. The study was carried out for 6 catchments located in the upper Vistula river basin (Poland): Dunajec (49°28′40″N 20°01′48″E), San (49°13′32″N 22°33′05″E), Rudawa (50°05′13″N 19°47′32″E), Skawinka (49°56′17″N 19°48′37″E), Czarna (50°40′25″N 21°02′44″E) and Koprzywianka (50°35′26″N 21°35′01″E). The analyses were carried out, based on hydro-meteorological data for period 1981–2020, with the following steps: determination of values of hydroenergetic potential of rivers, trend analysis of precipitation data and hydroenergetic potential of rivers, determination of values of standardised precipitation indices (SPI), analysis of relations between SPI indices and hydroenergetic potential of rivers. The study showed that the analysed catchments were characterised by spatially and temporally varying hydropower potential. The trend analysis showed a lack of unambiguous trends in hydropower potential values and precipitation totals, for the time periods studied. The analysis of the course of meteorological drought with SPI indices showed that it occurred with varying intensity during the time period studied (the distribution of wet years was similar to periods with drought, however, these periods occurred less frequently as meteorological drought). Statistically significant relationships were found between the course of meteorological drought and the development of the theoretical hydropower potential of the study catchments.

Suggested Citation

  • Młyński, Dariusz & Książek, Leszek & Bogdał, Andrzej, 2024. "Meteorological drought effect for Central Europe's hydropower potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212301033x
    DOI: 10.1016/j.rser.2023.114175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212301033X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Chen, Fu & Li, Weidong, 2018. "Hydropower curtailment in Yunnan Province, southwestern China: Constraint analysis and suggestions," Renewable Energy, Elsevier, vol. 121(C), pages 700-711.
    2. Bahadori, Alireza & Zahedi, Gholamreza & Zendehboudi, Sohrab, 2013. "An overview of Australia's hydropower energy: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 565-569.
    3. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    4. Silvio Pereira-Cardenal & Henrik Madsen & Karsten Arnbjerg-Nielsen & Niels Riegels & Roar Jensen & Birger Mo & Ivar Wangensteen & Peter Bauer-Gottwein, 2014. "Assessing climate change impacts on the Iberian power system using a coupled water-power model," Climatic Change, Springer, vol. 126(3), pages 351-364, October.
    5. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    6. Huđek, Helena & Žganec, Krešimir & Pusch, Martin T., 2020. "A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Tomasz Bryndal & Paweł Franczak & Rafał Kroczak & Wacław Cabaj & Adam Kołodziej, 2017. "The impact of extreme rainfall and flash floods on the flood risk management process and geomorphological changes in small Carpathian catchments: a case study of the Kasiniczanka river (Outer Carpathi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 95-120, August.
    8. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    9. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    10. Bahadori, Alireza & Nwaoha, Chikezie, 2013. "A review on solar energy utilisation in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 1-5.
    11. Isabelle Tobin & W Greuell & Sonia Jerez & F Ludwig & R Vautard & Michelle T H van Vliet & Francois-Marie Breon, 2018. "Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming," Post-Print hal-03323340, HAL.
    12. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
    13. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    14. Kevin E. Trenberth & John T. Fasullo & Theodore G. Shepherd, 2015. "Attribution of climate extreme events," Nature Climate Change, Nature, vol. 5(8), pages 725-730, August.
    15. Weijia Yang & Per Norrlund & Linn Saarinen & Adam Witt & Brennan Smith & Jiandong Yang & Urban Lundin, 2018. "Burden on hydropower units for short-term balancing of renewable power systems," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    16. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    17. Chen-Feng Yeh & Jinge Wang & Hsin-Fu Yeh & Cheng-Haw Lee, 2015. "SDI and Markov Chains for Regional Drought Characteristics," Sustainability, MDPI, vol. 7(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Shuai & Wang, Yimin & Su, Hui & Chang, Jianxia & Huang, Qiang & Li, Ziyan, 2024. "Dynamic quantitative assessment of multiple uncertainty sources in future hydropower generation prediction of cascade reservoirs with hydrological variations," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    2. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    3. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    4. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    5. Liu, Benxi & Liu, Tengyuan & Liao, Shengli & Wang, Haidong & Jin, Xiaoyu, 2023. "Short-term operation of cascade hydropower system sharing flexibility via high voltage direct current lines for multiple grids peak shaving," Renewable Energy, Elsevier, vol. 213(C), pages 11-29.
    6. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    7. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Historical development and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Bogumił Nowak & Anna Andrzejak & Grzegorz Filipiak & Mariusz Ptak & Mariusz Sojka, 2022. "Assessment of the Impact of Flow Changes and Water Management Rules in the Dam Reservoir on Energy Generation at the Jeziorsko Hydropower Plant," Energies, MDPI, vol. 15(20), pages 1-19, October.
    9. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    10. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    11. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    12. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    14. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    15. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    16. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    17. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    18. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    19. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    20. Juan Ignacio Ibañez & Alexander Freier, 2023. "Bitcoin’s Carbon Footprint Revisited: Proof of Work Mining for Renewable Energy Expansion," Challenges, MDPI, vol. 14(3), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212301033x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.