IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1844-d524924.html
   My bibliography  Save this article

Polystyrene Waste in Panels for Thermal Retrofitting of Historical Buildings: Experimental Study

Author

Listed:
  • Bożena Orlik-Kożdoń

    (Faculty of Civil Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The following article presents comprehensive research results for the insulation material based on polystyrene wastes. The presented product has the form of plates to be applied for thermal insulation of external envelopes from the inside. The laboratory tests were focused on the determination of basic technical parameters for this type of materials, i.e., thermal conductivity coefficient, diffusion resistance coefficient, reaction to fire, material sorption, and strength characteristics. For the recycling material, the obtained thermal conductivity value was 0.055 [W/mK]. The diffusion resistance coefficient was 5 [–], and therefore, this component has been qualified to a group of solutions that allow for interstitial condensation in the envelope. For the developed product, in situ tests were carried out on the actual wall system in a historical building. Based on the research, temperature and humidity profiles were obtained in the selected planes of the envelope. The performance of this material in real conditions was observed in relation to the reference product, i.e., lightweight cellular concrete (commonly used as thermal insulation from the inside). For the conducted in situ research, statistical inference was applied, which included the verification of the hypothesis-recycling panels in wall systems follow a trend of changes similar to that of slabs made of lightweight cellular concrete (a group of materials that allows for interstitial condensation). The proposed method of using secondary raw materials in insulation products allows us to obtain a product with high technical parameters that do not differ in quality from new components.

Suggested Citation

  • Bożena Orlik-Kożdoń, 2021. "Polystyrene Waste in Panels for Thermal Retrofitting of Historical Buildings: Experimental Study," Energies, MDPI, vol. 14(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1844-:d:524924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Piasecki & Elżbieta Radziszewska-Zielina & Piotr Czerski & Małgorzata Fedorczak-Cisak & Michał Zielina & Paweł Krzyściak & Patrycja Kwaśniewska-Sip & Wojciech Grześkowiak, 2020. "Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building," Energies, MDPI, vol. 13(22), pages 1-27, November.
    2. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    3. Alexander Rieser & Rainer Pfluger & Alexandra Troi & Daniel Herrera-Avellanosa & Kirsten Engelund Thomsen & Jørgen Rose & Zeynep Durmuş Arsan & Gulden Gokcen Akkurt & Gerhard Kopeinig & Gaëlle Guyot &, 2021. "Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    2. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    3. Jin-Young Park & Byung-Soo Kim & Dong-Eun Lee, 2021. "Environmental and Cost Impact Assessment of Pavement Materials Using IBEES Method," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    4. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    5. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    6. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    7. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    8. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    10. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    11. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    12. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    13. Alessia Buda & Ernst Jan de Place Hansen & Alexander Rieser & Emanuela Giancola & Valeria Natalina Pracchi & Sara Mauri & Valentina Marincioni & Virginia Gori & Kalliopi Fouseki & Cristina S. Polo Lóp, 2021. "Conservation-Compatible Retrofit Solutions in Historic Buildings: An Integrated Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    14. Eloise Leonora Gnoatto & Andreza Kalbusch & Elisa Henning, 2019. "Evaluation of the Environmental and Economic Impacts on the Life Cycle of Different Solutions for Toilet Flush Systems," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
    15. Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    16. Nkechi McNeil-Ayuk & Ahmad Jrade, 2025. "Integrating Building Information Modeling and Life Cycle Assessment to Enhance the Decisions Related to Selecting Construction Methods at the Conceptual Design Stage of Buildings," Sustainability, MDPI, vol. 17(7), pages 1-28, March.
    17. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    18. Won-Jun Park & Rakhyun Kim & Seungjun Roh & Hoki Ban, 2020. "Identifying the Major Construction Wastes in the Building Construction Phase Based on Life Cycle Assessments," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    19. Kimberly Bawden & Eric Williams, 2015. "Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings," Challenges, MDPI, vol. 6(1), pages 1-19, April.
    20. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1844-:d:524924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.