IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics1364032121007565.html
   My bibliography  Save this article

Development of a framework for evaluating the contents and usability of the building life cycle assessment tool

Author

Listed:
  • Kong, Minjin
  • Lee, Minhyun
  • Kang, Hyuna
  • Hong, Taehoon

Abstract

Over the past decades, various tools that can perform building life cycle assessment (LCA) as well as life cycle cost (LCC) or CO2 analysis, have been developed. Even though these developed tools should be effectively evaluated and improved to encourage the continuous use of such tools, no research has been conducted on this matter. In this regard, this study sought to propose a framework for evaluating a building LCA tool from both the developer's and user's perspectives. In the developer evaluation process, experts evaluate if the design and implementation status (i.e., content status) are appropriate, and determine the design and implementation problems (i.e., content problems) based on six evaluation criteria, through content evaluation. In the user evaluation process, the users and evaluators determine the usability problems based on six usability attributes, through usability evaluation. The developer and user evaluation results are then interpreted through Satisfaction-Importance (S–I) analysis and Severity-Priority (S–P) analysis to prioritize the area of improvement and to determine the improvement strategy. To verify the proposed framework, a case study was conducted on an actual building LCA tool. The evaluation results showed that the problems corresponding to the assessment method and result should be preferentially improved in terms of content, while those corresponding to learnability, efficiency, and errors should be preferentially improved in terms of usability. Therefore, it is expected that the utilization of the proposed framework can effectively evaluate and improve various conventional building LCA tools in a reasonable way.

Suggested Citation

  • Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007565
    DOI: 10.1016/j.rser.2021.111475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121007565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    2. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    3. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    4. Olubunmi, Olanipekun Ayokunle & Xia, Paul Bo & Skitmore, Martin, 2016. "Green building incentives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1611-1621.
    5. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    6. Sever, Ivan, 2015. "Importance-performance analysis: A valid management tool?," Tourism Management, Elsevier, vol. 48(C), pages 43-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    2. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    3. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    4. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    5. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Wang, Tao & Seo, Seongwon & Liao, Pin-Chao & Fang, Dongping, 2016. "GHG emission reduction performance of state-of-the-art green buildings: Review of two case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 484-493.
    8. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    9. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    10. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    11. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    12. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    15. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.
    16. Zezhou Wu & Qiufeng He & Kaijie Yang & Jinming Zhang & Kexi Xu, 2020. "Investigating the Dynamics of China’s Green Building Policy Development from 1986 to 2019," IJERPH, MDPI, vol. 18(1), pages 1-19, December.
    17. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    18. Shad, Rouzbeh & Khorrami, Mohammad & Ghaemi, Marjan, 2017. "Developing an Iranian green building assessment tool using decision making methods and geographical information system: Case study in Mashhad city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 324-340.
    19. Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Life Cycle Assessment of Building Renovation Measures–Trade-off between Building Materials and Energy," Energies, MDPI, vol. 12(3), pages 1-15, January.
    20. Apostolopoulos, Vasilis & Mamounakis, Ioannis & Seitaridis, Andreas & Tagkoulis, Nikolas & Kourkoumpas, Dimitrios-Sotirios & Iliadis, Petros & Angelakoglou, Komninos & Nikolopoulos, Nikolaos, 2023. "Αn integrated life cycle assessment and life cycle costing approach towards sustainable building renovation via a dynamic online tool," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.