IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1668-d519155.html
   My bibliography  Save this article

Design and Performance Evaluation of a Home Energy Management System for Power Saving

Author

Listed:
  • Daniel Chioran

    (Department of Automation, Technical University of Cluj Napoca, 400114 Cluj-Napoca, Romania)

  • Honoriu Valean

    (Department of Automation, Technical University of Cluj Napoca, 400114 Cluj-Napoca, Romania)

Abstract

In the context of the ongoing global warming, with environmental concerns regarding the greenhouse gas emissions due to our increasing energy consumption, smart energy management solutions have gained popularity as they have the potential to reduce our impact on the environment and also on our budgets. This paper proposes one of the most affordable designs for an autonomous, microcontroller-based demand-side energy management system to be installed in a home environment where it reduces the standby power consumed by the controlled devices. As a secondary function, it monitors and controls the lights to further save energy. The proposed system is designed to operate independently and also to limit the new wireless sources of electro-magnetic radiation introduced in the home environment. Six homes have been analyzed in terms of the measured energy consumption and to evaluate the energy management capabilities of the system, a prototype was built and tested. Promising results have been obtained and are detailed in the Results and Conclusion sections. A very low purchase price and good performance make this design a viable solution for intelligent home energy management, in today’s economic context.

Suggested Citation

  • Daniel Chioran & Honoriu Valean, 2021. "Design and Performance Evaluation of a Home Energy Management System for Power Saving," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1668-:d:519155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1668/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1668/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    2. Mario Collotta & Giovanni Pau, 2015. "A Solution Based on Bluetooth Low Energy for Smart Home Energy Management," Energies, MDPI, vol. 8(10), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonín Korauš & Miroslav Gombár & Alena Vagaská & Stanislav Šišulák & Filip Černák, 2021. "Secondary Energy Sources and Their Optimization in the Context of the Tax Gap on Petrol and Diesel," Energies, MDPI, vol. 14(14), pages 1-22, July.
    2. Zurisaddai de la Cruz Severiche Maury & Ana Fernández Vilas & Rebeca P. Díaz Redondo, 2022. "Low-Cost HEM with Arduino and Zigbee Technologies in the Energy Sector in Colombia," Energies, MDPI, vol. 15(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Bogdanov & Veljko Jeremiæ & Sandra Jednak & Mladen Èudanov, 2019. "Scrutinizing the Smart City Index: a multivariate statistical approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(2), pages 777-799.
    2. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    3. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    4. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    5. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    6. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    7. Joel Serey & Luis Quezada & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Gustavo Gatica & Sebastian Gutierrez & Manuel Vargas, 2020. "Methodological Proposals for the Development of Services in a Smart City: A Literature Review," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    8. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    9. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    10. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    11. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    12. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    13. Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
    14. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    15. Francesco Mancini & Gianluigi Lo Basso & Livio de Santoli, 2019. "Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility," Energies, MDPI, vol. 12(15), pages 1-21, July.
    16. Loi, Tian Sheng Allan & Jindal, Gautam, 2019. "Electricity market deregulation in Singapore – Initial assessment of wholesale prices," Energy Policy, Elsevier, vol. 127(C), pages 1-10.
    17. Furszyfer Del Rio, D.D., 2022. "Smart but unfriendly: Connected home products as enablers of conflict," Technology in Society, Elsevier, vol. 68(C).
    18. Taneja, Shivani & Mandys, Filip, 2022. "Drivers of UK household energy expenditure: Promoting efficiency and curbing emissions," Energy Policy, Elsevier, vol. 167(C).
    19. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    20. Elvira Ismagilova & Laurie Hughes & Nripendra P. Rana & Yogesh K. Dwivedi, 2022. "Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework," Information Systems Frontiers, Springer, vol. 24(2), pages 393-414, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1668-:d:519155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.