IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p11916-11938d57493.html
   My bibliography  Save this article

A Solution Based on Bluetooth Low Energy for Smart Home Energy Management

Author

Listed:
  • Mario Collotta

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, Enna 94100, Italy)

  • Giovanni Pau

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, Enna 94100, Italy)

Abstract

The research and the implementation of home automation are getting more popular because the Internet of Things holds promise for making homes smarter through wireless technologies. The installation of systems based on wireless networks can play a key role also in the extension of the smart grid towards smart homes, that can be deemed as one of the most important components of smart grids. This paper proposes a fuzzy-based solution for smart energy management in a home automation wireless network. The approach, by using Bluetooth Low Energy (BLE), introduces a Fuzzy Logic Controller (FLC) in order to improve a Home Energy Management (HEM) scheme, addressing the power load of standby appliances and their loads in different hours of the day. Since the consumer is involved in the choice of switching on/off of home appliances, the approach introduced in this work proposes a fuzzy-based solution in order to manage the consumer feedbacks. Simulation results show that the proposed solution is efficient in terms of reducing peak load demand, electricity consumption charges with an increase comfort level of consumers. The performance of the proposed BLE-based wireless network scenario are validated in terms of packet delivery ratio, delay, and jitter and are compared to IEEE 802.15.4 technology.

Suggested Citation

  • Mario Collotta & Giovanni Pau, 2015. "A Solution Based on Bluetooth Low Energy for Smart Home Energy Management," Energies, MDPI, vol. 8(10), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11916-11938:d:57493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/11916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/11916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiago D. P. Mendes & Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Smart Home Communication Technologies and Applications: Wireless Protocol Assessment for Home Area Network Resources," Energies, MDPI, vol. 8(7), pages 1-33, July.
    2. Mohamed A. Ahmed & Yong Cheol Kang & Young-Chon Kim, 2015. "Communication Network Architectures for Smart-House with Renewable Energy Resources," Energies, MDPI, vol. 8(8), pages 1-20, August.
    3. Antimo Barbato & Antonio Capone, 2014. "Optimization Models and Methods for Demand-Side Management of Residential Users: A Survey," Energies, MDPI, vol. 7(9), pages 1-38, September.
    4. Mario Collotta & Antonio Messineo & Giuseppina Nicolosi & Giovanni Pau, 2014. "A Dynamic Fuzzy Controller to Meet Thermal Comfort by Using Neural Network Forecasted Parameters as the Input," Energies, MDPI, vol. 7(8), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apolinar González-Potes & Walter A. Mata-López & Alberto M. Ochoa-Brust & Carlos Escobar-del Pozo, 2016. "Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks," Energies, MDPI, vol. 9(3), pages 1-24, February.
    2. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    3. Daniel Chioran & Honoriu Valean, 2021. "Design and Performance Evaluation of a Home Energy Management System for Power Saving," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    5. Wei Fan & Nian Liu & Jianhua Zhang, 2016. "An Event-Triggered Online Energy Management Algorithm of Smart Home: Lyapunov Optimization Approach," Energies, MDPI, vol. 9(5), pages 1-24, May.
    6. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    7. Ronggang Zhang & Sathishkumar V E & R. Dinesh Jackson Samuel, 2020. "Fuzzy Efficient Energy Smart Home Management System for Renewable Energy Resources," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    8. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    9. Mingfu Li & Guan-Yi Li & Hou-Ren Chen & Cheng-Wei Jiang, 2018. "QoE-Aware Smart Home Energy Management Considering Renewables and Electric Vehicles," Energies, MDPI, vol. 11(9), pages 1-16, September.
    10. Giovanni Pau & Mario Collotta & Vincenzo Maniscalco, 2017. "Bluetooth 5 Energy Management through a Fuzzy-PSO Solution for Mobile Devices of Internet of Things," Energies, MDPI, vol. 10(7), pages 1-22, July.
    11. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    12. Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie & Russell Haggar & Mike Baker, 2016. "Experimental Study of 6LoPLC for Home Energy Management Systems," Energies, MDPI, vol. 9(12), pages 1-19, December.
    13. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    14. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    2. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    3. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    4. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    5. Huang, Pei & Wu, Hunjun & Huang, Gongsheng & Sun, Yongjun, 2018. "A top-down control method of nZEBs for performance optimization at nZEB-cluster-level," Energy, Elsevier, vol. 159(C), pages 891-904.
    6. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    7. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    8. Eduardo M. G. Rodrigues & Radu Godina & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    10. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    11. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    12. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    13. Mengmeng Qiao & Zexu Yu & Zhenhai Dou & Yuanyuan Wang & Ye Zhao & Ruishuo Xie & Lianxin Liu, 2022. "Study on Economic Dispatch of the Combined Cooling Heating and Power Microgrid Based on Improved Sparrow Search Algorithm," Energies, MDPI, vol. 15(14), pages 1-31, July.
    14. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    15. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
    16. Jin Woo Moon & Min Hee Chung & Hayub Song & Se-Young Lee, 2016. "Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature," Energies, MDPI, vol. 9(12), pages 1-16, December.
    17. Xia, Yuanxing & Xu, Qingshan & Tao, Siyu & Du, Pengwei & Ding, Yixing & Fang, Jicheng, 2022. "Preserving operation privacy of peer-to-peer energy transaction based on Enhanced Benders Decomposition considering uncertainty of renewable energy generations," Energy, Elsevier, vol. 250(C).
    18. Verschae, Rodrigo & Kawashima, Hiroaki & Kato, Takekazu & Matsuyama, Takashi, 2016. "Coordinated energy management for inter-community imbalance minimization," Renewable Energy, Elsevier, vol. 87(P2), pages 922-935.
    19. Aleksic, Slavisa & Atanasov, Michael & Agius, Jean Calleja & Camilleri, Kenneth & Čartolovni, Anto & Climent-Pérez, Pau & Colantonio, Sara & Cristina, Stefania & Despotovic, Vladimir & Ekenel, Hazim K, 2022. "State of the Art of Audio- and Video-Based Solutions for AAL," EconStor Research Reports 251553, ZBW - Leibniz Information Centre for Economics.
    20. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11916-11938:d:57493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.