IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309387.html
   My bibliography  Save this article

An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management

Author

Listed:
  • Lork, Clement
  • Li, Wen-Tai
  • Qin, Yan
  • Zhou, Yuren
  • Yuen, Chau
  • Tushar, Wayes
  • Saha, Tapan K.

Abstract

Most existing methods for controlling the energy consumption of air conditioning (AC), focus on either scheduling the switching (on/off) of compressors or optimizing the overall energy consumption of AC system of an entire building. Unlike commercial buildings, residential apartments typically house separate ACs in individual rooms occupied by people with different thermal comfort preferences. Fortunately, the advancement of Internet-of-Things (IoT) technology has enabled the exploitation of sensory data to intelligently control the set-point temperature of ACs in individual rooms based on environmental conditions and occupant’s preferences, improving the energy efficiency of residential buildings. Indeed, control decisions based on sensory data may suffer from uncertainties due to error in data measurement and contribute to model uncertainty. This work proposes a data-driven uncertainty-aware approach to control split-type inverter ACs of residential buildings. First, information from similar AC and residential units are aggregated to reduce data imbalances, and Bayesian-Convolutional-Neural-Networks (BCNNs) are utilized to model the performance and uncertainty of the ACs from the aggregated data. Second, a Q-learning based reinforcement learning algorithm for set-point decision making is designed for setpoint optimization with transitions sampled from the BCNN models. Third, a case study is simulated based on such a framework to show that the control actions taken by the uncertainty-aware agent perform better in terms of discomfort management and energy savings compared to the uncertainty unaware agent. Further, the agent could also be adjusted to capture the trade-off between energy savings and comfort levels for varying degrees of energy and discomfort savings.

Suggested Citation

  • Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309387
    DOI: 10.1016/j.apenergy.2020.115426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    3. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    4. Yin, Rongxin & Kara, Emre C. & Li, Yaping & DeForest, Nicholas & Wang, Ke & Yong, Taiyou & Stadler, Michael, 2016. "Quantifying flexibility of commercial and residential loads for demand response using setpoint changes," Applied Energy, Elsevier, vol. 177(C), pages 149-164.
    5. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    6. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    7. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    8. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    9. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
    4. Sun, Fangyuan & Kong, Xiangyu & Wu, Jianzhong & Gao, Bixuan & Chen, Ke & Lu, Ning, 2022. "DSM pricing method based on A3C and LSTM under cloud-edge environment," Applied Energy, Elsevier, vol. 315(C).
    5. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
    6. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    7. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    8. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 312(C).
    10. Wu, Jingda & Huang, Chao & He, Hongwen & Huang, Hailong, 2024. "Confidence-aware reinforcement learning for energy management of electrified vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    12. Song, Yuguang & Xia, Mingchao & Chen, Qifang & Chen, Fangjian, 2023. "A data-model fusion dispatch strategy for the building energy flexibility based on the digital twin," Applied Energy, Elsevier, vol. 332(C).
    13. Charalampos Rafail Lazaridis & Iakovos Michailidis & Georgios Karatzinis & Panagiotis Michailidis & Elias Kosmatopoulos, 2024. "Evaluating Reinforcement Learning Algorithms in Residential Energy Saving and Comfort Management," Energies, MDPI, vol. 17(3), pages 1-33, January.
    14. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    15. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
    16. Lankeshwara, Gayan & Sharma, Rahul & Yan, Ruifeng & Saha, Tapan K., 2022. "Control algorithms to mitigate the effect of uncertainties in residential demand management," Applied Energy, Elsevier, vol. 306(PA).
    17. Rémy Rigo-Mariani & Alim Yakub, 2024. "Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy," Energies, MDPI, vol. 17(11), pages 1-17, June.
    18. Lavanya, R. & Murukesh, C. & Shanker, N.R., 2023. "Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller," Energy, Elsevier, vol. 278(PA).
    19. Zhang, Xiongfeng & Lu, Renzhi & Jiang, Junhui & Hong, Seung Ho & Song, Won Seok, 2021. "Testbed implementation of reinforcement learning-based demand response energy management system," Applied Energy, Elsevier, vol. 297(C).
    20. Hua, Weiqi & Stephen, Bruce & Wallom, David C.H., 2023. "Digital twin based reinforcement learning for extracting network structures and load patterns in planning and operation of distribution systems," Applied Energy, Elsevier, vol. 342(C).
    21. Qiang, Guofeng & Tang, Shu & Hao, Jianli & Di Sarno, Luigi & Wu, Guangdong & Ren, Shaoxing, 2023. "Building automation systems for energy and comfort management in green buildings: A critical review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    3. Samy Faddel & Guanyu Tian & Qun Zhou, 2021. "Decentralized Management of Commercial HVAC Systems," Energies, MDPI, vol. 14(11), pages 1-18, May.
    4. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    5. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    6. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    7. Löhr, Yannik & Wolf, Daniel & Pollerberg, Clemens & Hörsting, Alexander & Mönnigmann, Martin, 2021. "Supervisory model predictive control for combined electrical and thermal supply with multiple sources and storages," Applied Energy, Elsevier, vol. 290(C).
    8. Khodabakhshian, Mohammad & Feng, Lei & Börjesson, Stefan & Lindgärde, Olof & Wikander, Jan, 2017. "Reducing auxiliary energy consumption of heavy trucks by onboard prediction and real-time optimization," Applied Energy, Elsevier, vol. 188(C), pages 652-671.
    9. Ferracuti, Francesco & Fonti, Alessandro & Ciabattoni, Lucio & Pizzuti, Stefano & Arteconi, Alessia & Helsen, Lieve & Comodi, Gabriele, 2017. "Data-driven models for short-term thermal behaviour prediction in real buildings," Applied Energy, Elsevier, vol. 204(C), pages 1375-1387.
    10. Behl, Madhur & Smarra, Francesco & Mangharam, Rahul, 2016. "DR-Advisor: A data-driven demand response recommender system," Applied Energy, Elsevier, vol. 170(C), pages 30-46.
    11. Lešić, Vinko & Martinčević, Anita & Vašak, Mario, 2017. "Modular energy cost optimization for buildings with integrated microgrid," Applied Energy, Elsevier, vol. 197(C), pages 14-28.
    12. Michailidis, Iakovos T. & Schild, Thomas & Sangi, Roozbeh & Michailidis, Panagiotis & Korkas, Christos & Fütterer, Johannes & Müller, Dirk & Kosmatopoulos, Elias B., 2018. "Energy-efficient HVAC management using cooperative, self-trained, control agents: A real-life German building case study," Applied Energy, Elsevier, vol. 211(C), pages 113-125.
    13. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    14. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    15. Germán Ramos Ruiz & Eva Lucas Segarra & Carlos Fernández Bandera, 2018. "Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model," Energies, MDPI, vol. 12(1), pages 1-18, December.
    16. de Gracia, Alvaro & Tarragona, Joan & Crespo, Alicia & Fernández, Cèsar, 2020. "Smart control of dynamic phase change material wall system," Applied Energy, Elsevier, vol. 279(C).
    17. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    18. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    20. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.