IDEAS home Printed from https://ideas.repec.org/a/bla/revpol/v39y2022i3p330-352.html
   My bibliography  Save this article

Smart home technology: Challenges and opportunities for collaborative governance and policy research

Author

Listed:
  • Daniel J. Mallinson
  • Saahir Shafi

Abstract

Developing and developed nations face demographic challenges in the coming decades. Aging populations are expected to strain health resources and social safety nets. Smart home technology (SHT) is touted as a means for simultaneously improving quality of life and independence, while also reducing the long‐term costs of caring for an aging population. SHT also presents myriad governance and policy challenges, especially the protection and use of vast amounts of patient data. Alas, the governance and policy aspects of SHT research have been largely peripheral. The aims of this review are to cogently present the governance benefits and challenges of SHT and prompt greater engagement by policy scholars in myriad unanswered research questions. Specifically, it uses the collaborative governance framework to identify opportunities for, and barriers to, forward‐thinking public and private collaboration. Research engagement by policy researchers is vital for effective governing of this burgeoning sector.

Suggested Citation

  • Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
  • Handle: RePEc:bla:revpol:v:39:y:2022:i:3:p:330-352
    DOI: 10.1111/ropr.12470
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ropr.12470
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ropr.12470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Whitacre, Brian & Gallardo, Roberto, 2020. "State broadband policy: Impacts on availability," Telecommunications Policy, Elsevier, vol. 44(9).
    2. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    3. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    4. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    5. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    6. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Energies, MDPI, vol. 12(8), pages 1-21, April.
    7. William H. DeLone & Ephraim R. McLean, 1992. "Information Systems Success: The Quest for the Dependent Variable," Information Systems Research, INFORMS, vol. 3(1), pages 60-95, March.
    8. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    9. Innocent, Morgane & Francois-Lecompte, Agnes & Roudaut, Nolwenn, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    10. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Bergman, Noam & Makuch, Karen E., 2020. "Critically reviewing smart home technology applications and business models in Europe," Energy Policy, Elsevier, vol. 144(C).
    11. Antonis S. Billis & Evdokimos I. Konstantinidis & Vicky Zilidou & Kush Wadhwa & Aristea Kyriaki Ladas & Panagiotis D. Bamidis, 2013. "Biomedical Engineering and Elderly Support," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 2(2), pages 21-37, April.
    12. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    13. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    14. Ringel, Marc & Laidi, R & Djenouri, D, 2019. "Multiple Benefits through Smart Home Energy Management Solutions—A Simulation-Based Case Study of a Single-Family-House in Algeria and Germany," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118851, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Natasha Layton & Emily Steel, 2019. "The Convergence and Mainstreaming of Integrated Home Technologies for People with Disability," Societies, MDPI, vol. 9(4), pages 1-11, October.
    16. Marc Ringel & Roufaida Laidi & Djamel Djenouri, 2019. "Multiple Benefits through Smart Home Energy Management Solutions -- A Simulation-Based Case Study of a Single-Family House in Algeria and Germany," Papers 1904.11496, arXiv.org.
    17. Tepe, Markus & Vanhuysse, Pieter, 2009. "Are Aging OECD Welfare States on the Path to Gerontocracy?," Journal of Public Policy, Cambridge University Press, vol. 29(1), pages 1-28, April.
    18. Wilson, Charlie & Hargreaves, Tom & Hauxwell-Baldwin, Richard, 2017. "Benefits and risks of smart home technologies," Energy Policy, Elsevier, vol. 103(C), pages 72-83.
    19. Matthew Harding & Carlos Lamarche, 2016. "Empowering Consumers Through Data and Smart Technology: Experimental Evidence on the Consequences of Time‐of‐Use Electricity Pricing Policies," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 35(4), pages 906-931, September.
    20. Larissa Nicholls & Yolande Strengers & Jathan Sadowski, 2020. "Social impacts and control in the smart home," Nature Energy, Nature, vol. 5(3), pages 180-182, March.
    21. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    22. Ahmad Al-Aiad & Khalid Alkhatib & Muhammad Al-Ayyad & Ismail Hmeidi, 2016. "A Conceptual Framework of Smart Home Context: An Empirical Investigation," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 11(3), pages 42-56, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jingyu & Mallinson, Daniel J. & Ortiz, Selena E. & Domenica Iulo, Lisa, 2024. "Collaborative governance challenges in energy efficiency and conservation: The case of Pennsylvania," Utilities Policy, Elsevier, vol. 87(C).
    2. Nils C. Bandelow & Johanna Hornung & Ilana Schröder & Colette S. Vogeler, 2022. "Crises, technology, and policy change," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 252-254, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    2. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    3. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    4. Wei Gu & Peng Bao & Wenyuan Hao & Jaewoong Kim, 2019. "Empirical Examination of Intention to Continue to Use Smart Home Services," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    5. Furszyfer Del Rio, D.D., 2022. "Smart but unfriendly: Connected home products as enablers of conflict," Technology in Society, Elsevier, vol. 68(C).
    6. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    7. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    8. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
    9. Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    11. Moe Soheilian & Géza Fischl & Myriam Aries, 2021. "Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    12. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Su-Yen Chen & Chiachun Lee, 2019. "Perceptions of the Impact of High-Level-Machine-Intelligence from University Students in Taiwan: The Case for Human Professions, Autonomous Vehicles, and Smart Homes," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    14. Birgul Basarir-Ozel & Hande Bahar Turker & Vesile Aslihan Nasir, 2022. "Identifying the Key Drivers and Barriers of Smart Home Adoption: A Thematic Analysis from the Business Perspective," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    15. Attié, Elodie & Meyer-Waarden, Lars, 2022. "The acceptance and usage of smart connected objects according to adoption stages: an enhanced technology acceptance model integrating the diffusion of innovation, uses and gratification and privacy ca," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    16. Michael Cary, 2020. "Have greenhouse gas emissions from US energy production peaked? State level evidence from six subsectors," Environment Systems and Decisions, Springer, vol. 40(1), pages 125-134, March.
    17. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    18. Fathia Chekired & Oussama Taabli & Zakaria Mehdi Khellili & Amar Tilmatine & Aníbal T. de Almeida & Laurent Canale, 2022. "Near-Zero-Energy Building Management Based on Arduino Microcontroller—On-Site Lighting Management Application," Energies, MDPI, vol. 15(23), pages 1-20, November.
    19. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    20. Ohlan, Ramphul & Ohlan, Anshu, 2022. "A comprehensive bibliometric analysis and visualization of smart home research," Technological Forecasting and Social Change, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revpol:v:39:y:2022:i:3:p:330-352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ipsonea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.