IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1454-d512192.html
   My bibliography  Save this article

Fast Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using PGD-Based Fully Separated Representations

Author

Listed:
  • Abel Sancarlos

    (PIMM Lab and ESI Group Chair, Arts et Metiers Institute of Technology, 155 Boulevard de Hopital, F-75013 Paris, France
    ESI Group, 3bis rue Saarinen, 94528 Rungis, France
    Aragon Institute of Engineering Research, Universidad de Zaragoza, Maria de Luna, s.n., E-50018 Zaragoza, Spain)

  • Chady Ghnatios

    (Mechanical Engineering Department, Notre Dame University-Louaize (NDU), Zouk Mosbeh 72, Lebanon)

  • Jean-Louis Duval

    (ESI Group, 3bis rue Saarinen, 94528 Rungis, France)

  • Nicolas Zerbib

    (ESI Group, 3bis rue Saarinen, 94528 Rungis, France)

  • Elias Cueto

    (Aragon Institute of Engineering Research, Universidad de Zaragoza, Maria de Luna, s.n., E-50018 Zaragoza, Spain)

  • Francisco Chinesta

    (PIMM Lab and ESI Group Chair, Arts et Metiers Institute of Technology, 155 Boulevard de Hopital, F-75013 Paris, France
    ESI Group, 3bis rue Saarinen, 94528 Rungis, France)

Abstract

A novel Model Order Reduction (MOR) technique is developed to compute high-dimensional parametric solutions for electromagnetic fields in synchronous machines. Specifically, the intrusive version of the Proper Generalized Decomposition (PGD) is employed to simulate a Permanent-Magnet Synchronous Motor (PMSM). The result is a virtual chart allowing real-time evaluation of the magnetic vector potential as a function of the operation point of the motor, or even as a function of constructive parameters, such as the remanent flux in permanent magnets. Currently, these solutions are highly demanded by the industry, especially with the recent developments in the Electric Vehicle (EV). In this framework, standard discretization techniques require highly time-consuming simulations when analyzing, for instance, the noise and vibration in electric motors. The proposed approach is able to construct a virtual chart within a few minutes of off-line simulation, thanks to the use of a fully separated representation in which the solution is written from a series of functions of the space and parameters coordinates, with full space separation made possible by the use of an adapted geometrical mapping. Finally, excellent performances are reported when comparing the reduced-order model with the more standard and computationally costly Finite Element solutions.

Suggested Citation

  • Abel Sancarlos & Chady Ghnatios & Jean-Louis Duval & Nicolas Zerbib & Elias Cueto & Francisco Chinesta, 2021. "Fast Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using PGD-Based Fully Separated Representations," Energies, MDPI, vol. 14(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1454-:d:512192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xueping Xu & Qinkai Han & Fulei Chu, 2018. "Review of Electromagnetic Vibration in Electrical Machines," Energies, MDPI, vol. 11(7), pages 1-33, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos N. Gyftakis & Carlos A. Platero & Yucheng Zhang & Santiago Bernal, 2019. "Diagnosis of Static Eccentricity in 3-Phase Synchronous Machines using a Pseudo Zero-Sequence Current," Energies, MDPI, vol. 12(13), pages 1-16, June.
    2. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    3. Edison Gundabattini & Arkadiusz Mystkowski & Adam Idzkowski & Raja Singh R. & Darius Gnanaraj Solomon, 2021. "Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review," Energies, MDPI, vol. 14(5), pages 1-32, March.
    4. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    5. Patxi Gonzalez & Garikoitz Buigues & Angel Javier Mazon, 2023. "Noise in Electric Motors: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-22, July.
    6. Janusz Petryna & Arkadiusz Duda & Maciej Sułowicz, 2021. "Eccentricity in Induction Machines—A Useful Tool for Assessing Its Level," Energies, MDPI, vol. 14(7), pages 1-26, April.
    7. Adam Muc & Marcin Morawiec & Filip Wilczyński, 2023. "Steady-State Vibration Level Measurement of the Five-Phase Induction Machine during Third Harmonic Injection or Open-Phase Faults," Energies, MDPI, vol. 16(2), pages 1-16, January.
    8. Artem Ermolaev & Vladimir Erofeev & Aleksandr Plekhov & Dmitry Titov, 2022. "Magnetic Vibration in Induction Motor Caused by Supply Voltage Distortion," Energies, MDPI, vol. 15(24), pages 1-11, December.
    9. Arkadiusz Duda & Piotr Drozdowski, 2020. "Induction Motor Fault Diagnosis Based on Zero-Sequence Current Analysis," Energies, MDPI, vol. 13(24), pages 1-25, December.
    10. Jijian Lian & Hongzhen Wang & Haijun Wang, 2018. "Study on Vibration Transmission among Units in Underground Powerhouse of a Hydropower Station," Energies, MDPI, vol. 11(11), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1454-:d:512192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.