IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1370-d509310.html
   My bibliography  Save this article

Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations

Author

Listed:
  • Héricles Eduardo Oliveira Farias

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Camilo Alberto Sepulveda Rangel

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Leonardo Weber Stringini

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Luciane Neves Canha

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Daniel Pegoraro Bertineti

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Wagner da Silva Brignol

    (Department of Electrical Engineering , Federal University of Santa Maria—UFSM, Santa Maria 97105-900, Brazil)

  • Zeno Iensen Nadal

    (Electric Energy Paranaense Company—COPEL-DIS, Curitiba 81200-240, Brazil)

Abstract

This paper proposes a flexible framework for scheduling and real time operation of electric vehicle charging stations (EVCS). The methodology applies a multi-objective evolutionary particle swarm optimization algorithm (EPSO) for electric vehicles (EVs) scheduling based on a day-ahead scenario. Then, real time operation is managed based on a rule-based (RB) approach. Two types of consumer were considered: EV owners with a day-ahead request for charging (scheduled consumers, SCh) and non-scheduling users (NSCh). EPSO has two main objectives: cost reduction and reduce overloading for high demand in grid. The EVCS has support by photovoltaic generation (PV), battery energy storage systems (BESS), and the distribution grid. The method allows the selection between three types of charging, distributing it according to EV demand. The model estimates SC remaining state of charge (SoC) for arriving to EVCS and then adjusts the actual difference by the RB. The results showed a profit for EVCS by the proposed technique. The proposed EPSO and RB have a fast solution to the problem that allows practical implementation.

Suggested Citation

  • Héricles Eduardo Oliveira Farias & Camilo Alberto Sepulveda Rangel & Leonardo Weber Stringini & Luciane Neves Canha & Daniel Pegoraro Bertineti & Wagner da Silva Brignol & Zeno Iensen Nadal, 2021. "Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(5), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1370-:d:509310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    2. Nikolaos Milas & Dimitris Mourtzis & Emmanuel Tatakis, 2020. "A Decision-Making Framework for the Smart Charging of Electric Vehicles Considering the Priorities of the Driver," Energies, MDPI, vol. 13(22), pages 1-28, November.
    3. Ruifeng Shi & Penghui Zhang & Jie Zhang & Li Niu & Xiaoting Han, 2020. "Multidispatch for Microgrid including Renewable Energy and Electric Vehicles with Robust Optimization Algorithm," Energies, MDPI, vol. 13(11), pages 1-15, June.
    4. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    5. Teguh Kurniawan & Craig A. Baguley & Udaya K. Madawala & Suwarno & Nanang Hariyanto & Yuana Adianto, 2020. "An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers," Energies, MDPI, vol. 13(13), pages 1-13, July.
    6. Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Pierluigi Siano & Ramesh Krishnamoorthy & Raghu Selvaraj, 2017. "Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    7. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    8. Yeongenn Kwon & Taeyoung Kim & Keon Baek & Jinho Kim, 2020. "Multi-Objective Optimization of Home Appliances and Electric Vehicle Considering Customer’s Benefits and Offsite Shared Photovoltaic Curtailment," Energies, MDPI, vol. 13(11), pages 1-16, June.
    9. Marija Zima-Bockarjova & Antans Sauhats & Lubov Petrichenko & Roman Petrichenko, 2020. "Charging and Discharging Scheduling for Electrical Vehicles Using a Shapley-Value Approach," Energies, MDPI, vol. 13(5), pages 1-21, March.
    10. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2020. "Machine Learning-Based Management of Electric Vehicles Charging: Towards Highly-Dispersed Fast Chargers," Energies, MDPI, vol. 13(20), pages 1-24, October.
    11. Jaehyun Lee & Eunjung Lee & Jinho Kim, 2020. "Electric Vehicle Charging and Discharging Algorithm Based on Reinforcement Learning with Data-Driven Approach in Dynamic Pricing Scheme," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeshwar Mahanta, 2018. "Impact of Electric Vehicle Charging Station Load on Distribution Network," Energies, MDPI, vol. 11(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfranco Chicco & Andrea Mazza & Salvatore Musumeci & Enrico Pons & Angela Russo, 2022. "Editorial for the Special Issue “Verifying the Targets—Selected Papers from the 55th International Universities Power Engineering Conference (UPEC 2020)”," Energies, MDPI, vol. 15(15), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Suyono & Mir Toufikur Rahman & Hazlie Mokhlis & Mohamadariff Othman & Hazlee Azil Illias & Hasmaini Mohamad, 2019. "Optimal Scheduling of Plug-in Electric Vehicle Charging Including Time-of-Use Tariff to Minimize Cost and System Stress," Energies, MDPI, vol. 12(8), pages 1-21, April.
    2. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    3. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    4. Pramote Jaruwatanachai & Yod Sukamongkol & Taweesak Samanchuen, 2023. "Predicting and Managing EV Charging Demand on Electrical Grids: A Simulation-Based Approach," Energies, MDPI, vol. 16(8), pages 1-22, April.
    5. Stavros Poniris & Anastasios I. Dounis, 2022. "Electric Vehicle Charging Schedules in Workplace Parking Lots Based on Evolutionary Optimization Algorithm," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Byungsung Lee & Haesung Lee & Hyun Ahn, 2020. "Improving Load Forecasting of Electric Vehicle Charging Stations Through Missing Data Imputation," Energies, MDPI, vol. 13(18), pages 1-15, September.
    7. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    8. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    9. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    10. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    11. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    12. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    13. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    14. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    15. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    16. Hyukjoon Lee & Dongjin Ji & Dong-Ho Cho, 2019. "Optimal Design of Wireless Charging Electric Bus System Based on Reinforcement Learning," Energies, MDPI, vol. 12(7), pages 1-20, March.
    17. Tian Mao & Xin Zhang & Baorong Zhou, 2019. "Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    18. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    19. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    20. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.

    More about this item

    Keywords

    EVCS; EPSO; rule-based; EV scheduling;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1370-:d:509310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.