IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1950-d345954.html
   My bibliography  Save this article

Electric Vehicle Charging and Discharging Algorithm Based on Reinforcement Learning with Data-Driven Approach in Dynamic Pricing Scheme

Author

Listed:
  • Jaehyun Lee

    (School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea)

  • Eunjung Lee

    (School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea)

  • Jinho Kim

    (School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea)

Abstract

In the smart grid environment, the penetration of electric vehicle (EV) is increasing, and dynamic pricing and vehicle-to-grid technologies are being introduced. Consequently, automatic charging and discharging scheduling responding to electricity prices that change over time is required to reduce the charging cost of EVs, while increasing the grid reliability by moving charging loads from on-peak to off-peak periods. Hence, this study proposes a deep reinforcement learning-based, real-time EV charging and discharging algorithm. The proposed method utilizes kernel density estimation, particularly the nonparametric density function estimation method, to model the usage pattern of a specific charger at a specific location. Subsequently, the estimated density function is used to sample variables related to charger usage pattern so that the variables can be cast in the training process of a reinforcement learning agent. This ensures that the agent optimally learns the characteristics of the target charger. We analyzed the effectiveness of the proposed algorithm from two perspectives, i.e., charging cost and load shifting effect. Simulation results show that the proposed method outperforms the benchmarks that simply model usage pattern through general assumptions in terms of charging cost and load shifting effect. This means that when a reinforcement learning-based charging/discharging algorithm is deployed in a specific location, it is better to use data-driven approach to reflect the characteristics of the location, so that the charging cost reduction and the effect of load flattening are obtained.

Suggested Citation

  • Jaehyun Lee & Eunjung Lee & Jinho Kim, 2020. "Electric Vehicle Charging and Discharging Algorithm Based on Reinforcement Learning with Data-Driven Approach in Dynamic Pricing Scheme," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1950-:d:345954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadi Suyono & Mir Toufikur Rahman & Hazlie Mokhlis & Mohamadariff Othman & Hazlee Azil Illias & Hasmaini Mohamad, 2019. "Optimal Scheduling of Plug-in Electric Vehicle Charging Including Time-of-Use Tariff to Minimize Cost and System Stress," Energies, MDPI, vol. 12(8), pages 1-21, April.
    2. Škugor, Branimir & Deur, Joško, 2015. "Dynamic programming-based optimisation of charging an electric vehicle fleet system represented by an aggregate battery model," Energy, Elsevier, vol. 92(P3), pages 456-465.
    3. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    4. Rishabh Ghotge & Yitzhak Snow & Samira Farahani & Zofia Lukszo & Ad van Wijk, 2020. "Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under EV Demand Uncertainty," Energies, MDPI, vol. 13(5), pages 1-18, March.
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    6. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    7. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    8. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    9. Peng, Chao & Zou, Jianxiao & Lian, Lian & Li, Liying, 2017. "An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits," Applied Energy, Elsevier, vol. 190(C), pages 591-599.
    10. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Optimal vehicle to grid planning and scheduling using double layer multi-objective algorithm," Energy, Elsevier, vol. 112(C), pages 1060-1073.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorokhova, Marina & Martinson, Yann & Ballif, Christophe & Wyrsch, Nicolas, 2021. "Deep reinforcement learning control of electric vehicle charging in the presence of photovoltaic generation," Applied Energy, Elsevier, vol. 301(C).
    2. Byungsung Lee & Haesung Lee & Hyun Ahn, 2020. "Improving Load Forecasting of Electric Vehicle Charging Stations Through Missing Data Imputation," Energies, MDPI, vol. 13(18), pages 1-15, September.
    3. Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    5. Athanasios Paraskevas & Dimitrios Aletras & Antonios Chrysopoulos & Antonios Marinopoulos & Dimitrios I. Doukas, 2022. "Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning," Energies, MDPI, vol. 15(7), pages 1-24, March.
    6. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Héricles Eduardo Oliveira Farias & Camilo Alberto Sepulveda Rangel & Leonardo Weber Stringini & Luciane Neves Canha & Daniel Pegoraro Bertineti & Wagner da Silva Brignol & Zeno Iensen Nadal, 2021. "Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(5), pages 1-27, March.
    8. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
    10. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    11. Christos D. Korkas & Christos D. Tsaknakis & Athanasios Ch. Kapoutsis & Elias Kosmatopoulos, 2024. "Distributed and Multi-Agent Reinforcement Learning Framework for Optimal Electric Vehicle Charging Scheduling," Energies, MDPI, vol. 17(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    2. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    3. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    4. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    5. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    6. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    7. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    8. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    9. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    10. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    11. Chris Johnathon & Ashish Prakash Agalgaonkar & Joel Kennedy & Chayne Planiden, 2021. "Analyzing Electricity Markets with Increasing Penetration of Large-Scale Renewable Power Generation," Energies, MDPI, vol. 14(22), pages 1-15, November.
    12. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
    14. Athanasios Paraskevas & Dimitrios Aletras & Antonios Chrysopoulos & Antonios Marinopoulos & Dimitrios I. Doukas, 2022. "Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning," Energies, MDPI, vol. 15(7), pages 1-24, March.
    15. Morteza Nazari-Heris & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "An Updated Review and Outlook on Electric Vehicle Aggregators in Electric Energy Networks," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    16. Choi, Dong Gu & Murali, Karthik, 2022. "The impact of heterogeneity in consumer characteristics on the design of optimal time-of-use tariffs," Energy, Elsevier, vol. 254(PB).
    17. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    18. Dong Gu Choi & Michael K. Lim & Karthik Murali & Valerie M. Thomas, 2020. "Why Have Voluntary Time‐of‐Use Tariffs Fallen Short in the Residential Sector?," Production and Operations Management, Production and Operations Management Society, vol. 29(3), pages 617-642, March.
    19. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    20. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1950-:d:345954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.