IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1880-d119050.html
   My bibliography  Save this article

Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling

Author

Listed:
  • Kang Miao Tan

    (Power Quality Research Group, Institute of Power Engineering, Department of Electrical Power Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, Selangor 43000, Malaysia)

  • Vigna K. Ramachandaramurthy

    (Power Quality Research Group, Institute of Power Engineering, Department of Electrical Power Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, Selangor 43000, Malaysia)

  • Jia Ying Yong

    (Power Quality Research Group, Institute of Power Engineering, Department of Electrical Power Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, Selangor 43000, Malaysia)

  • Sanjeevikumar Padmanaban

    (Department of Electrical and Electronics Engineering, University of Johannesburg, 2006 Auckland Park, South Africa)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy-Fredrikstad, Norway)

  • Frede Blaabjerg

    (Centre for Reliable Power Electronics (CORPE), Department of Energy Technology, Aalborg University, 9000 Aalborg, Denmark)

Abstract

The introduction of electric vehicles into the transportation sector helps reduce global warming and carbon emissions. The interaction between electric vehicles and the power grid has spurred the emergence of a smart grid technology, denoted as vehicle-to grid-technology. Vehicle-to-grid technology manages the energy exchange between a large fleet of electric vehicles and the power grid to accomplish shared advantages for the vehicle owners and the power utility. This paper presents an optimal scheduling of vehicle-to-grid using the genetic algorithm to minimize the power grid load variance. This is achieved by allowing electric vehicles charging (grid-to-vehicle) whenever the actual power grid loading is lower than the target loading, while conducting electric vehicle discharging (vehicle-to-grid) whenever the actual power grid loading is higher than the target loading. The vehicle-to-grid optimization algorithm is implemented and tested in MATLAB software (R2013a, MathWorks, Natick, MA, USA). The performance of the optimization algorithm depends heavily on the setting of the target load, power grid load and capability of the grid-connected electric vehicles. Hence, the performance of the proposed algorithm under various target load and electric vehicles’ state of charge selections were analysed. The effectiveness of the vehicle-to-grid scheduling to implement the appropriate peak load shaving and load levelling services for the grid load variance minimization is verified under various simulation investigations. This research proposal also recommends an appropriate setting for the power utility in terms of the selection of the target load based on the electric vehicle historical data.

Suggested Citation

  • Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1880-:d:119050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    2. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    3. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
    4. Sridhar Vavilapalli & Sanjeevikumar Padmanaban & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    6. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
    7. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    8. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    9. Mohan Krishna S. & Febin Daya J.L. & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2017. "Real-Time Analysis of a Modified State Observer for Sensorless Induction Motor Drive Used in Electric Vehicle Applications," Energies, MDPI, vol. 10(8), pages 1-23, July.
    10. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Pierluigi Siano, 2017. "Investigation on the Development of a Sliding Mode Controller for Constant Power Loads in Microgrids," Energies, MDPI, vol. 10(8), pages 1-24, July.
    11. Marco E. T. Gerards & Johann L. Hurink, 2016. "Robust Peak-Shaving for a Neighborhood with Electric Vehicles," Energies, MDPI, vol. 9(8), pages 1-16, July.
    12. Swaminathan Ganesan & Sanjeevikumar Padmanaban & Ramesh Varadarajan & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Study and Analysis of an Intelligent Microgrid Energy Management Solution with Distributed Energy Sources," Energies, MDPI, vol. 10(9), pages 1-21, September.
    13. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    14. Reza Ahmadi Kordkheili & Seyyed Ali Pourmousavi & Mehdi Savaghebi & Josep M. Guerrero & Mohammad Hashem Nehrir, 2016. "Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks," Energies, MDPI, vol. 9(1), pages 1-17, January.
    15. Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Pierluigi Siano & Ramesh Krishnamoorthy & Raghu Selvaraj, 2017. "Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    16. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    17. Ahmed Ali & Sanjeevikumar Padmanaban & Bhekisipho Twala & Tshilidzi Marwala, 2017. "Electric Power Grids Distribution Generation System for Optimal Location and Sizing—A Case Study Investigation by Various Optimization Algorithms," Energies, MDPI, vol. 10(7), pages 1-13, July.
    18. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    19. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Enabling solar electricity with electric vehicles smart charging," Energy, Elsevier, vol. 87(C), pages 10-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    2. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Shahid Hussain & Ki-Beom Lee & Mohamed A. Ahmed & Barry Hayes & Young-Chon Kim, 2020. "Two-Stage Fuzzy Logic Inference Algorithm for Maximizing the Quality of Performance under the Operational Constraints of Power Grid in Electric Vehicle Parking Lots," Energies, MDPI, vol. 13(18), pages 1-31, September.
    4. Theron Smith & Joseph Garcia & Gregory Washington, 2022. "Novel PEV Charging Approaches for Extending Transformer Life," Energies, MDPI, vol. 15(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    2. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    3. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.
    4. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    5. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    6. Umashankar Subramaniam & Swaminathan Ganesan & Mahajan Sagar Bhaskar & Sanjeevikumar Padmanaban & Frede Blaabjerg & Dhafer J. Almakhles, 2019. "Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles," Energies, MDPI, vol. 12(14), pages 1-14, July.
    7. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    8. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    9. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Ramji Tiwari & Sanjeevikumar Padmanaban & Ramesh Babu Neelakandan, 2017. "Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-17, September.
    11. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    12. Popović Vlado & Jereb Borut & Kilibarda Milorad & Andrejić Milan & Keshavarzsaleh Abolfazl & Dragan Dejan, 2018. "Electric Vehicles as Electricity Storages in Electric Power Systems," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 9(2), pages 57-72, October.
    13. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    15. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    16. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    18. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    20. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1880-:d:119050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.