IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp153-164.html
   My bibliography  Save this article

Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices

Author

Listed:
  • Bianco, Vincenzo
  • Scarpa, Federico
  • Tagliafico, Luca A.

Abstract

The aim of the present research is to evaluate future primary energy consumption in the Italian thermoelectric sector. Despite its importance in the European context, researches addressing the primary energy consumption in the Italian power sector are not available in the literature. Therefore, to bridge this gap, a detailed representation of the power generation sector is proposed by modeling each individual thermal power station by considering its main features (i.e. maximum power, minimum stable level, efficiency, etc.), in order to estimate the future energy balances and the trend of power prices. An evolution of the generation fleet is designed according to available information from different sources and a simulation based on plant by plant competition is performed up to the year 2022. The impact of different fuel and carbon price scenarios is analyzed in terms of primary energy consumption.

Suggested Citation

  • Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2015. "Long term outlook of primary energy consumption of the Italian thermoelectric sector: Impact of fuel and carbon prices," Energy, Elsevier, vol. 87(C), pages 153-164.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:153-164
    DOI: 10.1016/j.energy.2015.04.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
    2. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    3. Sáfián, Fanni, 2014. "Modelling the Hungarian energy system – The first step towards sustainable energy planning," Energy, Elsevier, vol. 69(C), pages 58-66.
    4. Vespucci, Maria Teresa & Innorta, Mario & Cervigni, Guido, 2013. "A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer," Energy Economics, Elsevier, vol. 35(C), pages 35-41.
    5. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    6. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    9. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    10. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    11. Alessandro Franco & Pasquale Salza, 2011. "RETRACTED ARTICLE: Perspectives for the long-term penetration of new renewables in complex energy systems: the Italian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(2), pages 309-330, April.
    12. Meleo, Linda, 2014. "On the determinants of industrial competitiveness: The European Union emission trading scheme and the Italian paper industry," Energy Policy, Elsevier, vol. 74(C), pages 535-546.
    13. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    15. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    16. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    17. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
    2. Bianco, Vincenzo & Driha, Oana M. & Sevilla-Jiménez, Martín, 2019. "Effects of renewables deployment in the Spanish electricity generation sector," Utilities Policy, Elsevier, vol. 56(C), pages 72-81.
    3. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    4. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    5. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
    6. Federico Scarpa & Vincenzo Bianco, 2017. "Assessing the Quality of Natural Gas Consumption Forecasting: An Application to the Italian Residential Sector," Energies, MDPI, vol. 10(11), pages 1-13, November.
    7. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A Tagliafico, 2020. "Heat pumps for buildings heating: Energy, environmental, and economic issues," Energy & Environment, , vol. 31(1), pages 116-129, February.
    8. Saldarriaga-C., Carlos A. & Salazar, Harold, 2016. "Security of the Colombian energy supply: The need for liquefied natural gas regasification terminals for power and natural gas sectors," Energy, Elsevier, vol. 100(C), pages 349-362.
    9. Bianco, Vincenzo & Scarpa, Federico, 2018. "Impact of the phase out of French nuclear reactors on the Italian power sector," Energy, Elsevier, vol. 150(C), pages 722-734.
    10. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2021. "Pathways to electric mobility integration in the Italian automotive sector," Energy, Elsevier, vol. 221(C).
    11. Li-Ling Peng & Guo-Feng Fan & Min-Liang Huang & Wei-Chiang Hong, 2016. "Hybridizing DEMD and Quantum PSO with SVR in Electric Load Forecasting," Energies, MDPI, vol. 9(3), pages 1-20, March.
    12. Barros, Carlos Pestana & Wanke, Peter, 2017. "Efficiency in Angolan thermal power plants: Evidence from cost structure and pollutant emissions," Energy, Elsevier, vol. 130(C), pages 129-143.
    13. Shukla, Anup & Singh, S.N., 2016. "Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem," Energy, Elsevier, vol. 96(C), pages 23-36.
    14. Vincenzo Bianco, 2018. "The Future of the Italian Electricity Generation Sector. An Analysis of the Possible Strategic Models," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(3), pages 20-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    2. González-Bravo, Ramón & Fuentes-Cortés, Luis Fabián & Ponce-Ortega, José María, 2017. "Defining priorities in the design of power and water distribution networks," Energy, Elsevier, vol. 137(C), pages 1026-1040.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    5. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    6. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
    7. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    8. Bianco, Vincenzo & Scarpa, Federico, 2018. "Impact of the phase out of French nuclear reactors on the Italian power sector," Energy, Elsevier, vol. 150(C), pages 722-734.
    9. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    10. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    11. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    12. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    13. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    14. Edmunds, R.K. & Cockerill, T.T. & Foxon, T.J. & Ingham, D.B. & Pourkashanian, M., 2014. "Technical benefits of energy storage and electricity interconnections in future British power systems," Energy, Elsevier, vol. 70(C), pages 577-587.
    15. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    16. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.
    17. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    18. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    19. Zhai, Pei & Larsen, Peter & Millstein, Dev & Menon, Surabi & Masanet, Eric, 2012. "The potential for avoided emissions from photovoltaic electricity in the United States," Energy, Elsevier, vol. 47(1), pages 443-450.
    20. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:153-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.