IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p871-d495280.html
   My bibliography  Save this article

Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods

Author

Listed:
  • Michael D. Murphy

    (Department of Process, Energy and Transport Engineering, Munster Technological University, Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland)

  • Paul D. O’Sullivan

    (Department of Process, Energy and Transport Engineering, Munster Technological University, Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland)

  • Guilherme Carrilho da Graça

    (Dom Luiz Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal)

  • Adam O’Donovan

    (Department of Process, Energy and Transport Engineering, Munster Technological University, Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland)

Abstract

In this study, a grey box (GB) model for simulating internal air temperatures in a naturally ventilated nearly zero energy building (nZEB) was developed and calibrated, using multiple data configurations for model parameter selection and an automatic calibration algorithm. The GB model was compared to a white box (WB) model for the same application using identical calibration and validation datasets. Calibrating the GB model using only one week of data produced very accurate results for the calibration periods but led to inconsistent and typically inaccurate results for the validation periods (root mean squared error (RMSE) in validation periods was 229% larger than the RMSE in calibration periods). Using three weeks of data from varying seasons for calibration reduced the model accuracy in the calibration period but substantially increased the model accuracy and generalisation abilities for the validation period, reducing the mean RMSE by over 160%. The use of one week of data increased the standard deviation in parameter selections by over 40% when compared with the three-week calibration datasets. Utilising data from multiple seasons for calibration purposes was found to substantially improve generalisation abilities. When compared to the WB model, the GB model produced slightly less accurate results (mean RMSE of the GB model was 1.5% higher). However, the authors found that employing GB modelling with an automatic model calibration technique reduced the human labour input for simulating internal air temperature of a naturally ventilated nZEB by approximately 90%, relative to WB modelling using a manually calibrated approach.

Suggested Citation

  • Michael D. Murphy & Paul D. O’Sullivan & Guilherme Carrilho da Graça & Adam O’Donovan, 2021. "Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods," Energies, MDPI, vol. 14(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:871-:d:495280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana Ogando & Natalia Cid & Marta Fernández, 2017. "Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain," Energies, MDPI, vol. 10(6), pages 1-17, June.
    2. Robertson, Joseph J. & Polly, Ben J. & Collis, Jon M., 2015. "Reduced-order modeling and simulated annealing optimization for efficient residential building utility bill calibration," Applied Energy, Elsevier, vol. 148(C), pages 169-177.
    3. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    4. Feng, Wei & Zhang, Qianning & Ji, Hui & Wang, Ran & Zhou, Nan & Ye, Qing & Hao, Bin & Li, Yutong & Luo, Duo & Lau, Stephen Siu Yu, 2019. "A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    6. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    7. Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Towards net zero energy in industrial and commercial buildings in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
    9. O' Donovan, Adam & O' Sullivan, Paul D. & Murphy, Michael D., 2019. "Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches," Applied Energy, Elsevier, vol. 250(C), pages 991-1010.
    10. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    11. Shine, P. & Scully, T. & Upton, J. & Shalloo, L. & Murphy, M.D., 2018. "Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis," Applied Energy, Elsevier, vol. 210(C), pages 529-537.
    12. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    13. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Brem & Ken Bruton & Paul D. O’Sullivan, 2021. "Assessing the Risk to Indoor Thermal Environments on Industrial Sites Offering AHU Capacity for Demand Response," Energies, MDPI, vol. 14(19), pages 1-28, October.
    2. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).
    3. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    4. Rosa Francesca De Masi & Antonio Gigante & Valentino Festa & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of HVAC’s Management on Indoor Thermo-Hygrometric Comfort and Energy Balance: In Situ Assessments on a Real nZEB," Energies, MDPI, vol. 14(21), pages 1-30, November.
    5. David Borge-Diez, 2022. "Advanced Energy Efficiency Systems in Buildings," Energies, MDPI, vol. 15(19), pages 1-3, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei-Han & You, Fengqi, 2022. "Sustainable building climate control with renewable energy sources using nonlinear model predictive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. O' Donovan, Adam & O' Sullivan, Paul D. & Murphy, Michael D., 2019. "Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches," Applied Energy, Elsevier, vol. 250(C), pages 991-1010.
    3. Bowen Jia & Wenjie Li & Guanyu Chen & Wenbin Sun & Bowen Wang & Ning Xu, 2023. "Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    4. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    5. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    6. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    7. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    8. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    9. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
    10. Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
    11. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    12. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    13. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    14. Vicente Gutiérrez González & Lissette Álvarez Colmenares & Jesús Fernando López Fidalgo & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Uncertainy’s Indices Assessment for Calibrated Energy Models," Energies, MDPI, vol. 12(11), pages 1-18, May.
    15. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    16. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    17. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    18. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    20. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:871-:d:495280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.