IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v148y2015icp169-177.html
   My bibliography  Save this article

Reduced-order modeling and simulated annealing optimization for efficient residential building utility bill calibration

Author

Listed:
  • Robertson, Joseph J.
  • Polly, Ben J.
  • Collis, Jon M.

Abstract

This simulation study applies the general framework described in BESTEST-EX for self-testing residential building energy model calibration methods. The National Renewable Energy Laboratory’s BEopt/DOE-2.2 is used to evaluate an automated regression metamodeling-based calibration approach in the context of monthly synthetic utility data for a 1960s-era existing home in a cooling-dominated climate. The home’s model inputs are assigned probability distributions representing uncertainty ranges, pseudo-random selections are made from the uncertainty ranges to define “explicit” input values, and synthetic utility billing data are generated using the explicit input values. A central composite design is used to develop response surface statistical models for the home’s predicted energy use. Applying a gradient-based simulated annealing optimization algorithm to the statistical “metamodels”, the calibration approach systematically adjusts values of the design variables and reduces disagreement between predicted energy use and synthetic utility billing data. Various retrofit measures are applied and used to assess accuracy of retrofit savings predictions resulting from using the calibration procedure. Substituting actual BEopt/DOE-2.2 model simulations with the statistical models reduces overall calibration procedure run-time while sacrificing only a limited degree of accuracy for retrofit savings predictions.

Suggested Citation

  • Robertson, Joseph J. & Polly, Ben J. & Collis, Jon M., 2015. "Reduced-order modeling and simulated annealing optimization for efficient residential building utility bill calibration," Applied Energy, Elsevier, vol. 148(C), pages 169-177.
  • Handle: RePEc:eee:appene:v:148:y:2015:i:c:p:169-177
    DOI: 10.1016/j.apenergy.2015.03.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915003335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.03.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. Durieux, Severine & Pierreval, Henri, 2004. "Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource," International Journal of Production Economics, Elsevier, vol. 89(1), pages 21-30, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
    2. Michael D. Murphy & Paul D. O’Sullivan & Guilherme Carrilho da Graça & Adam O’Donovan, 2021. "Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods," Energies, MDPI, vol. 14(4), pages 1-24, February.
    3. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    4. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    5. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
    6. Wijesuriya, Sajith & Brandt, Matthew & Tabares-Velasco, Paulo Cesar, 2018. "Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate," Applied Energy, Elsevier, vol. 222(C), pages 497-514.
    7. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    8. Vicente Gutiérrez González & Lissette Álvarez Colmenares & Jesús Fernando López Fidalgo & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Uncertainy’s Indices Assessment for Calibrated Energy Models," Energies, MDPI, vol. 12(11), pages 1-18, May.
    9. Ström, Henrik, 2017. "Computational optimization of catalyst distributions at the nano-scale," Applied Energy, Elsevier, vol. 185(P2), pages 2224-2231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    2. Shi, Wen & Shang, Jennifer & Liu, Zhixue & Zuo, Xiaolu, 2014. "Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 664-676.
    3. Katarzyna Growiec & Jakub Growiec & Bogumil Kaminski, 2017. "Social Network Structure and The Trade-Off Between Social Utility and Economic Performance," KAE Working Papers 2017-026, Warsaw School of Economics, Collegium of Economic Analysis.
    4. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    5. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    6. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    8. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    9. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    10. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    11. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    12. Durieux, Severine & Pierreval, Henri, 2004. "Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource," International Journal of Production Economics, Elsevier, vol. 89(1), pages 21-30, May.
    13. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    14. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    15. Ziesmer, Johannes & Jin, Ding & Mukashov, Askar & Henning, Christian, 2023. "Integrating fundamental model uncertainty in policy analysis," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    16. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    17. Kleijnen, J.P.C. & Sanchez, S.M. & Lucas, T.W. & Cioppa, T.M., 2003. "A User's Guide to the Brave New World of Designing Simulation Experiments," Discussion Paper 2003-1, Tilburg University, Center for Economic Research.
    18. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    19. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    20. Johannes Ziesmer & Ding Jin & Sneha D Thube & Christian Henning, 2023. "A Dynamic Baseline Calibration Procedure for CGE models," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1331-1368, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:169-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.