IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1765-d117386.html
   My bibliography  Save this article

A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid

Author

Listed:
  • Damilola A. Asaleye

    (Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Co. Cork T12 P928, Ireland)

  • Michael Breen

    (Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Co. Cork T12 P928, Ireland)

  • Michael D. Murphy

    (Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Co. Cork T12 P928, Ireland)

Abstract

The objective of this study was to create a tool that will enable renewable energy microgrid (REμG) facility users to make informed decisions on the utilization of electrical power output from a building integrated REμG connected to a smart grid. A decision support tool for renewable energy microgrids (DSTREM) capable of predicting photovoltaic array and wind turbine power outputs was developed. The tool simulated users’ daily electricity consumption costs, avoided CO 2 emissions and incurred monetary income relative to the usage of the building integrated REμG connected to the national electricity smart grid. DSTREM forecasted climate variables, which were used to predict REμG power output over a period of seven days. Control logic was used to prioritize supply of electricity to consumers from the renewable energy sources and the national smart grid. Across the evaluated REμG electricity supply options and during working days, electricity exported by the REμG to the national smart grid ranged from 0% to 61% of total daily generation. The results demonstrated that both monetary saving and CO 2 offsets can be substantially improved through the application of DSTREM to a REμG connected to a building.

Suggested Citation

  • Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1765-:d:117386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaiser, Kyle & Stroeve, Pieter, 2014. "The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village," Applied Energy, Elsevier, vol. 113(C), pages 1586-1595.
    2. Mu-Gu Jeong & Seung-Il Moon & Pyeong-Ik Hwang, 2016. "Indirect Load Control for Energy Storage Systems Using Incentive Pricing under Time-of-Use Tariff," Energies, MDPI, vol. 9(7), pages 1-20, July.
    3. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    4. Li, Xiwang & Wen, Jin & Malkawi, Ali, 2016. "An operation optimization and decision framework for a building cluster with distributed energy systems," Applied Energy, Elsevier, vol. 178(C), pages 98-109.
    5. repec:aen:journl:eeep4_1_valeri is not listed on IDEAS
    6. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    7. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    8. Paul Deane, John FitzGerald, Laura Malaguzzi Valeri, Aidan Tuohy and Darragh Walsh, 2015. "Irish and British electricity prices: what recent history implies for future prices," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    9. Jingshuang Shen & Chuanwen Jiang & Bosong Li, 2015. "Controllable Load Management Approaches in Smart Grids," Energies, MDPI, vol. 8(10), pages 1-16, October.
    10. Soshinskaya, Mariya & Crijns-Graus, Wina H.J. & van der Meer, Jos & Guerrero, Josep M., 2014. "Application of a microgrid with renewables for a water treatment plant," Applied Energy, Elsevier, vol. 134(C), pages 20-34.
    11. Iulia Stamatescu & Nicoleta Arghira & Ioana Făgărăşan & Grigore Stamatescu & Sergiu Stelian Iliescu & Vasile Calofir, 2017. "Decision Support System for a Low Voltage Renewable Energy System," Energies, MDPI, vol. 10(1), pages 1-15, January.
    12. Roulston, M.S. & Kaplan, D.T. & Hardenberg, J. & Smith, L.A., 2003. "Using medium-range weather forcasts to improve the value of wind energy production," Renewable Energy, Elsevier, vol. 28(4), pages 585-602.
    13. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    14. Cristina Rottondi & Markus Duchon & Dagmar Koss & Andrei Palamarciuc & Alessandro Pití & Giacomo Verticale & Bernhard Schätz, 2015. "An Energy Management Service for the Smart Office," Energies, MDPI, vol. 8(10), pages 1-18, October.
    15. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    16. Rosario Miceli, 2013. "Energy Management and Smart Grids," Energies, MDPI, vol. 6(4), pages 1-29, April.
    17. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Bonamente & Andrea Aquino, 2019. "Environmental Performance of Innovative Ground-Source Heat Pumps with PCM Energy Storage," Energies, MDPI, vol. 13(1), pages 1-15, December.
    2. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    3. Michael D. Murphy & Paul D. O’Sullivan & Guilherme Carrilho da Graça & Adam O’Donovan, 2021. "Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Kamal Chapagain & Somsak Kittipiyakul, 2018. "Performance Analysis of Short-Term Electricity Demand with Atmospheric Variables," Energies, MDPI, vol. 11(4), pages 1-34, April.
    5. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    6. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    7. O' Donovan, Adam & O' Sullivan, Paul D. & Murphy, Michael D., 2019. "Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches," Applied Energy, Elsevier, vol. 250(C), pages 991-1010.
    8. Masoumeh Javadi & Mousa Marzband & Mudathir Funsho Akorede & Radu Godina & Ameena Saad Al-Sumaiti & Edris Pouresmaeil, 2018. "A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market," Energies, MDPI, vol. 11(11), pages 1-22, November.
    9. Yong Long & Chengrong Pan & Yu Wang, 2018. "Research on a Microgrid Subsidy Strategy Based on Operational Efficiency of the Industry Chain," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    10. Jan K. Kazak & Małgorzata Świąder, 2018. "SOLIS—A Novel Decision Support Tool for the Assessment of Solar Radiation in ArcGIS," Energies, MDPI, vol. 11(8), pages 1-12, August.
    11. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    2. Fernández, David & Pozo, Carlos & Folgado, Rubén & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2017. "Multiperiod model for the optimal production planning in the industrial gases sector," Applied Energy, Elsevier, vol. 206(C), pages 667-682.
    3. Sun, Chuanwang, 2015. "An empirical case study about the reform of tiered pricing for household electricity in China," Applied Energy, Elsevier, vol. 160(C), pages 383-389.
    4. Shine, P. & Scully, T. & Upton, J. & Shalloo, L. & Murphy, M.D., 2018. "Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis," Applied Energy, Elsevier, vol. 210(C), pages 529-537.
    5. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    6. Zhang, Hao & Cai, Jie & Fang, Kan & Zhao, Fu & Sutherland, John W., 2017. "Operational optimization of a grid-connected factory with onsite photovoltaic and battery storage systems," Applied Energy, Elsevier, vol. 205(C), pages 1538-1547.
    7. Berrueta, Alberto & Urtasun, Andoni & Ursúa, Alfredo & Sanchis, Pablo, 2018. "A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model," Energy, Elsevier, vol. 144(C), pages 286-300.
    8. Kai Ma & Yege Bai & Jie Yang & Yangqing Yu & Qiuxia Yang, 2017. "Demand-Side Energy Management Based on Nonconvex Optimization in Smart Grid," Energies, MDPI, vol. 10(10), pages 1-17, October.
    9. Cai, Jie & Zhang, Hao & Jin, Xing, 2019. "Aging-aware predictive control of PV-battery assets in buildings," Applied Energy, Elsevier, vol. 236(C), pages 478-488.
    10. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    11. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    14. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    15. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    16. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    17. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    18. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    19. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    20. Loßner, Martin & Böttger, Diana & Bruckner, Thomas, 2017. "Economic assessment of virtual power plants in the German energy market — A scenario-based and model-supported analysis," Energy Economics, Elsevier, vol. 62(C), pages 125-138.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1765-:d:117386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.