IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p136-d125669.html
   My bibliography  Save this article

Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles

Author

Listed:
  • Peng Liu

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Beijing Co-Innovation Center for Electric Vehicles Lecturer, Beijing 100081, China)

  • Zhenyu Sun

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Beijing Co-Innovation Center for Electric Vehicles Lecturer, Beijing 100081, China)

  • Zhenpo Wang

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Beijing Co-Innovation Center for Electric Vehicles Lecturer, Beijing 100081, China)

  • Jin Zhang

    (National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
    Beijing Co-Innovation Center for Electric Vehicles Lecturer, Beijing 100081, China)

Abstract

The battery is a key component and the major fault source in electric vehicles (EVs). Ensuring power battery safety is of great significance to make the diagnosis more effective and predict the occurrence of faults, for the power battery is one of the core technologies of EVs. This paper proposes a voltage fault diagnosis detection mechanism using entropy theory which is demonstrated in an EV with a multiple-cell battery system during an actual operation situation. The preliminary analysis, after collecting and preprocessing the typical data periods from Operation Service and Management Center for Electric Vehicle (OSMC-EV) in Beijing, shows that overvoltage fault for Li-ion batteries cell can be observed from the voltage curves. To further locate abnormal cells and predict faults, an entropy weight method is established to calculate the objective weight, which reduces the subjectivity and improves the reliability. The result clearly identifies the abnormity of cell voltage. The proposed diagnostic model can be used for EV real-time diagnosis without laboratory testing methods. It is more effective than traditional methods based on contrastive analysis.

Suggested Citation

  • Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:136-:d:125669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    2. Chen, Zeyu & Xiong, Rui & Tian, Jinpeng & Shang, Xiong & Lu, Jiahuan, 2016. "Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles," Applied Energy, Elsevier, vol. 184(C), pages 365-374.
    3. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    4. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    5. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    6. Liu, Zhentong & He, Hongwen, 2017. "Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter," Applied Energy, Elsevier, vol. 185(P2), pages 2033-2044.
    7. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    8. Rui Xiong & Hongwen He & Fengchun Sun & Kai Zhao, 2012. "Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach," Energies, MDPI, vol. 5(5), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Li & Zhaosheng Zhang & Peng Liu & Zhenpo Wang, 2019. "DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-15, August.
    2. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    3. Yang, Jiong & Cheng, Fanyong & Liu, Zhi & Duodu, Maxwell Mensah & Zhang, Mingyan, 2023. "A novel semi-supervised fault detection and isolation method for battery system of electric vehicles," Applied Energy, Elsevier, vol. 349(C).
    4. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    5. Rui Xiong & Suleiman M. Sharkh & Xi Zhang, 2018. "Research Progress on Electric and Intelligent Vehicles," Energies, MDPI, vol. 11(7), pages 1-5, July.
    6. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    7. Jiong Yang & Fanyong Cheng & Maxwell Duodu & Miao Li & Chao Han, 2022. "High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD," Energies, MDPI, vol. 15(22), pages 1-20, November.
    8. Hong, Jichao & Liang, Fengwei & Chen, Yingjie & Wang, Facheng & Zhang, Xinyang & Li, Kerui & Zhang, Huaqin & Yang, Jingsong & Zhang, Chi & Yang, Haixu & Ma, Shikun & Yang, Qianqian, 2024. "A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
    2. Aijuan Li & Wanzhong Zhao & Xibo Wang & Xuyun Qiu, 2018. "ACT-R Cognitive Model Based Trajectory Planning Method Study for Electric Vehicle’s Active Obstacle Avoidance System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    3. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    4. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    5. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    6. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    7. Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
    8. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    10. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    11. Mingjie Zhao & Junhui Shi & Cheng Lin & Junzhi Zhang, 2018. "Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission," Energies, MDPI, vol. 11(2), pages 1-16, February.
    12. Mingchun Liu & Feihong Gu & Juhua Huang & Changjiang Wang & Ming Cao, 2017. "Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor," Energies, MDPI, vol. 10(12), pages 1-23, December.
    13. Dandan Su & Chengning Zhang & Yugang Dong, 2017. "An Improved Continuous-Time Model Predictive Control of Permanent Magnetic Synchronous Motors for a Wide-Speed Range," Energies, MDPI, vol. 10(12), pages 1-18, December.
    14. Xiaopeng Tang & Ke Yao & Boyang Liu & Wengui Hu & Furong Gao, 2018. "Long-Term Battery Voltage, Power, and Surface Temperature Prediction Using a Model-Based Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Zepeng Gao & Sizhong Chen & Yuzhuang Zhao & Jinrui Nan, 2018. "Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation Algorithm," Energies, MDPI, vol. 11(2), pages 1-26, February.
    16. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    17. Bumin Meng & Yaonan Wang & Jianxu Mao & Jianwen Liu & Guochang Xu & Jian Dai, 2018. "Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat," Energies, MDPI, vol. 11(3), pages 1-20, March.
    18. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    19. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    20. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:136-:d:125669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.