IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009121.html
   My bibliography  Save this article

How to enable large format 4680 cylindrical lithium-ion batteries

Author

Listed:
  • Li, Shen
  • Marzook, Mohamed Waseem
  • Zhang, Cheng
  • Offer, Gregory J.
  • Marinescu, Monica

Abstract

The demand for large format lithium-ion batteries is increasing, because they can be integrated and controlled easier at a system level. However, increasing the size leads to increased heat generation risking overheating. 1865 and 2170 cylindrical cells can be both base cooled or side cooled with reasonable efficiency. Large format 4680 cylindrical cells have become popular after Tesla filed a patent. If these cells are to become widely used, then understanding how to thermally manage them is essential. In this work, we create a model of a 4680 cylindrical cell, and use it to study different thermal management options. Our work elucidates the comprehensive mechanisms how the hot topic ‘tabless design’ improves the performance of 4680 cell and makes any larger format cell possible while current commercial cylindrical cells cannot be simply scaled up to satisfy power and thermal performance. As a consequence, the model identifies the reason for the tabless cell's release: the thermal performance of the 4680 tabless cell can be no worse than that of the 2170 cell, while the 4680 tabless tab cell boasts 5.4 times the energy and 6.9 times the power. Finally, via the model, a procedure is proposed for choosing the thermal management for large format cylindrical cell for maximum performance. As an example, we demonstrate that the best cooling approach for the 4680 tabless cell is base cooling, while for the 2170 LG M50T cell it is side cooling. We conclude that any viable large format cylindrical cell must include a continuous tab (or ‘tabless’) design and be cooled through its base when in a pack. The results are of immediate interest to both cell manufacturers and battery pack designers, while the developed modelling and parameterization framework is of wider use for all energy storage system design.

Suggested Citation

  • Li, Shen & Marzook, Mohamed Waseem & Zhang, Cheng & Offer, Gregory J. & Marinescu, Monica, 2023. "How to enable large format 4680 cylindrical lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009121
    DOI: 10.1016/j.apenergy.2023.121548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lander, Laura & Kallitsis, Evangelos & Hales, Alastair & Edge, Jacqueline Sophie & Korre, Anna & Offer, Gregory, 2021. "Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management," Applied Energy, Elsevier, vol. 289(C).
    2. Klein, M. & Tong, S. & Park, J.W., 2016. "In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell," Applied Energy, Elsevier, vol. 165(C), pages 639-647.
    3. Coleman, Brittany & Ostanek, Jason & Heinzel, John, 2016. "Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions," Applied Energy, Elsevier, vol. 180(C), pages 14-26.
    4. Feng, Xuning & Weng, Caihao & Ouyang, Minggao & Sun, Jing, 2016. "Online internal short circuit detection for a large format lithium ion battery," Applied Energy, Elsevier, vol. 161(C), pages 168-180.
    5. Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    3. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    4. Weng, Caihao & Feng, Xuning & Sun, Jing & Peng, Huei, 2016. "State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking," Applied Energy, Elsevier, vol. 180(C), pages 360-368.
    5. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    6. Qiao, Dongdong & Wang, Xueyuan & Lai, Xin & Zheng, Yuejiu & Wei, Xuezhe & Dai, Haifeng, 2022. "Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method," Energy, Elsevier, vol. 243(C).
    7. Chu, Zhengyu & Feng, Xuning & Lu, Languang & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2017. "Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model," Applied Energy, Elsevier, vol. 204(C), pages 1240-1250.
    8. Ouyang, Minggao & Gao, Shang & Lu, Languang & Feng, Xuning & Ren, Dongsheng & Li, Jianqiu & Zheng, Yuejiu & Shen, Ping, 2016. "Determination of the battery pack capacity considering the estimation error using a Capacity–Quantity diagram," Applied Energy, Elsevier, vol. 177(C), pages 384-392.
    9. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    11. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    12. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    13. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    14. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    15. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    16. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    17. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    18. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    19. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    20. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.