IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1141-d503240.html
   My bibliography  Save this article

Parametric Study of a Lunar Base Power Systems

Author

Listed:
  • Marcin Kaczmarzyk

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznanska 2, 35-959 Rzeszow, Poland)

  • Michał Musiał

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznanska 2, 35-959 Rzeszow, Poland)

Abstract

Due to the extreme cost of cargo transportation from Earth to the lunar surface, future lunar base subsystems are required to be rigorously optimized in terms of mass reduction. The purpose of this paper was to identify and evaluate the influence of key parameters of proposed lunar base power systems, as well as of the lunar environment on the total power system mass. Nine different power systems were studied as combinations of two power sources and three energy storage technologies. Power system architecture, total power demand of the base, its power management strategy, solar array structure type, Selenographic latitude and solar illumination conditions were nominated as the primary parameters for this study. Total power system mass calculations were performed for more than 200 combinations of these parameters, including three separate case studies. The total mass calculated for each combination included a power source, an energy storage unit, temperature control and the balance of system. For the wide range of studied parameters, hybrid power systems that combine solar and nuclear power were found to be the most advantageous solutions in terms of mass reduction.

Suggested Citation

  • Marcin Kaczmarzyk & Michał Musiał, 2021. "Parametric Study of a Lunar Base Power Systems," Energies, MDPI, vol. 14(4), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1141-:d:503240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin R. Mallon & Francis Assadian & Bo Fu, 2017. "Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan," Energies, MDPI, vol. 10(7), pages 1-31, July.
    2. Marcin Kaczmarzyk & Aleksander Starakiewicz & Aleksander Waśniowski, 2020. "Internal Heat Gains in a Lunar Base—A Contemporary Case Study," Energies, MDPI, vol. 13(12), pages 1-28, June.
    3. Abbas Fotouhi & Daniel J. Auger & Laura O’Neill & Tom Cleaver & Sylwia Walus, 2017. "Lithium-Sulfur Battery Technology Readiness and Applications—A Review," Energies, MDPI, vol. 10(12), pages 1-15, November.
    4. Krystian Siczek & Krzysztof Siczek & Piotr Piersa & Łukasz Adrian & Szymon Szufa & Andrzej Obraniak & Przemysław Kubiak & Wojciech Zakrzewicz & Grzegorz Bogusławski, 2020. "The Comparative Study on the Li-S and Li-ion Batteries Cooperating with the Photovoltaic Array," Energies, MDPI, vol. 13(19), pages 1-24, October.
    5. Zhiyu Wang & Yanfeng Dong & Hongjiang Li & Zongbin Zhao & Hao Bin Wu & Ce Hao & Shaohong Liu & Jieshan Qiu & Xiong Wen (David) Lou, 2014. "Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zekuan & Wang, Zixuan & Cheng, Kunlin & Wang, Cong & Ha, Chan & Fei, Teng & Qin, Jiang, 2023. "Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization," Energy, Elsevier, vol. 278(PA).
    2. Gordon, Jeffrey M., 2022. "Uninterrupted photovoltaic power for lunar colonization without the need for storage," Renewable Energy, Elsevier, vol. 187(C), pages 987-994.
    3. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenji Araki & Yasuyuki Ota & Akira Nagaoka & Kensuke Nishioka, 2023. "3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System," Energies, MDPI, vol. 16(11), pages 1-20, May.
    2. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.
    3. Xie, Yanping & Zhao, Hongbin & Cheng, Hongwei & Hu, Chenji & Fang, Wenying & Fang, Jianhui & Xu, Jiaqiang & Chen, Zhongwei, 2016. "Facile large-scale synthesis of core–shell structured sulfur@polypyrrole composite and its application in lithium–sulfur batteries with high energy density," Applied Energy, Elsevier, vol. 175(C), pages 522-528.
    4. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Export Constraints Applicable to Renewable Generation to Enhance Grid Hosting Capacity," Energies, MDPI, vol. 17(11), pages 1-30, May.
    5. Christos S. Ioakimidis & Alberto Murillo-Marrodán & Ali Bagheri & Dimitrios Thomas & Konstantinos N. Genikomsakis, 2019. "Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios," Sustainability, MDPI, vol. 11(9), pages 1-14, May.
    6. Salimeh Gohari & Vaclav Knap & Mohammad Reza Yaftian, 2021. "Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    7. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2020. "Comprehensive energy modeling methodology for battery electric buses," Energy, Elsevier, vol. 207(C).
    8. Edwin R. Grijalva & José María López Martínez, 2019. "Analysis of the Reduction of CO 2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study," Energies, MDPI, vol. 12(3), pages 1-31, February.
    9. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    10. Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
    12. Łukasz Adrian & Szymon Szufa & Filip Mikołajczyk & Piotr Piersa & Michał Głogowski, 2023. "Improving the Energy Efficiency of Equipment for the Impregnation of Roof Trusses—Modeling and Practical Implementation," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    13. Lluís Trilla & Lluc Canals Casals & Jordi Jacas & Pol Paradell, 2022. "Dual Extended Kalman Filter for State of Charge Estimation of Lithium–Sulfur Batteries," Energies, MDPI, vol. 15(19), pages 1-14, September.
    14. Li, Bi & Li, Zhinong & He, Deqiang, 2024. "Research and optimization of energy management system for photovoltaic vehicles," Energy, Elsevier, vol. 289(C).
    15. Kenji Araki & Yasuyuki Ota & Anju Maeda & Minoru Kumano & Kensuke Nishioka, 2023. "Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors," Energies, MDPI, vol. 16(8), pages 1-25, April.
    16. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    17. Basem Al Alwan & Zhao Wang & Wissam Fawaz & K. Y. Simon Ng, 2022. "Transition Metal Carbides Filler-Reinforced Composite Polymer Electrolyte for Solid-State Lithium-Sulfur Batteries at Room Temperature: Breakthrough," Energies, MDPI, vol. 15(21), pages 1-11, October.
    18. Daifen Chen & Biao Hu & Kai Ding & Cheng Yan & Liu Lu, 2018. "The Geometry Effect of Cathode/Anode Areas Ratio on Electrochemical Performance of Button Fuel Cell Using Mixed Conducting Materials," Energies, MDPI, vol. 11(7), pages 1-16, July.
    19. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    20. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1141-:d:503240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.