IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3213-d374272.html
   My bibliography  Save this article

Internal Heat Gains in a Lunar Base—A Contemporary Case Study

Author

Listed:
  • Marcin Kaczmarzyk

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznanska 2, 35-959 Rzeszow, Poland)

  • Aleksander Starakiewicz

    (Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, ul. Poznanska 2, 35-959 Rzeszow, Poland)

  • Aleksander Waśniowski

    (LUNARES Mobile Research Station, Space Garden ltd., Pl. Wolnosci 13/2, 35-073 Rzeszow, Poland)

Abstract

The Moon’s environmental conditions present limited opportunities for waste heat dissipation, so internal heat gains (IHG) are a key component of thermal balance in a lunar building. Despite the significant development in energy saving and energy storage technologies of the last thirty years, the issue of IHG in lunar buildings has not been readdressed since the early 1990s. This study is based on an inspection of internal heat sources conducted aboard LUNARES, the first European extraterrestrial analogue habitat. The equipment absent on LUNARES, but indispensable for an actual lunar base, was identified and accounted for, along with additional laboratory and maintenance equipment. Three main groups of internal heat sources were identified and studied in detail. Waste heat generated by electric devices was accounted for, along with occupational heat loads adjusted for lunar partial gravity conditions. Assuming a photovoltaic power source for the studied building, two alternative energy storage systems (ESS) were analysed as another source of waste heat. Depending on the time of lunar day and applied ESS, the nominal IHG were between 73 and 133 W/m 2 . The most significant internal heat sources in a lunar base are life support systems and potentially, regenerative fuel cells; thus, lithium–ion batteries were recommended for ESS. Within assumed parameter range, parametric study exhibited differences in IHG between 41.5 and 163 W/m 2 .

Suggested Citation

  • Marcin Kaczmarzyk & Aleksander Starakiewicz & Aleksander Waśniowski, 2020. "Internal Heat Gains in a Lunar Base—A Contemporary Case Study," Energies, MDPI, vol. 13(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3213-:d:374272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rossano Albatici & Francesco Passerini & Jens Pfafferott, 2016. "Energy Performance of Verandas in the Building Retrofit Process," Energies, MDPI, vol. 9(5), pages 1-12, May.
    2. Hyemi Kim & Kyung-soon Park & Hwan-yong Kim & Young-hak Song, 2018. "Study on Variation of Internal Heat Gain in Office Buildings by Chronology," Energies, MDPI, vol. 11(4), pages 1-16, April.
    3. Cristina Baglivo & Paolo Maria Congedo & Matteo Di Cataldo & Luigi Damiano Coluccia & Delia D’Agostino, 2017. "Envelope Design Optimization by Thermal Modelling of a Building in a Warm Climate," Energies, MDPI, vol. 10(11), pages 1-34, November.
    4. Sang-Hoon Park & Dong-Woo Kim & Goo-Sang Joe & Seong-Ryong Ryu & Myoung-Souk Yeo & Kwang-Woo Kim, 2020. "Establishing Boundary Conditions Considering Influence Factors of the Room Equipped with a Ceiling Radiant Cooling Panel," Energies, MDPI, vol. 13(7), pages 1-21, April.
    5. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Savings in Cooling Energy with a Thermal Management System for LED Lighting in Office Buildings," Energies, MDPI, vol. 8(7), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Kaczmarzyk & Michał Musiał, 2021. "Parametric Study of a Lunar Base Power Systems," Energies, MDPI, vol. 14(4), pages 1-31, February.
    2. Aleksandra Stachera & Adam Stolarski & Mariusz Owczarek & Marek Telejko, 2022. "A Method of Multi-Criteria Assessment of the Building Energy Consumption," Energies, MDPI, vol. 16(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luigi Ventola & Gabriele Curcuruto & Matteo Fasano & Saverio Fotia & Vincenzo Pugliese & Eliodoro Chiavazzo & Pietro Asinari, 2016. "Unshrouded Plate Fin Heat Sinks for Electronics Cooling: Validation of a Comprehensive Thermal Model and Cost Optimization in Semi-Active Configuration," Energies, MDPI, vol. 9(8), pages 1-16, August.
    2. Hyemi Kim & Kyung-soon Park & Hwan-yong Kim & Young-hak Song, 2019. "A Study on the Changes in the Heat Source Capacity and Air-Conditioning Load due to Retrofit; Focusing on a Large Office Building in Korea," Energies, MDPI, vol. 12(5), pages 1-18, March.
    3. Jose Luiz F. Barbosa & Dan Simon & Wesley P. Calixto, 2017. "Design Optimization of a High Power LED Matrix Luminaire," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    5. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    6. Cristina Baglivo & Marina Bonomolo & Paolo Maria Congedo, 2019. "Modeling of Light Pipes for the Optimal Disposition in Buildings," Energies, MDPI, vol. 12(22), pages 1-28, November.
    7. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    8. Mi-Su Shin & Ji-Su Choi & Kyu-Nam Rhee, 2020. "Cooling Capacity and Energy Performance of Open-Type Ceiling Radiant Cooling Panel System with Air Circulators," Energies, MDPI, vol. 14(1), pages 1-15, December.
    9. Jongyeon Lim & Ryozo Ooka, 2021. "A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential," Energies, MDPI, vol. 14(5), pages 1-16, March.
    10. Matteo Dongellini & Paolo Valdiserri & Claudia Naldi & Gian Luca Morini, 2020. "The Role of Emitters, Heat Pump Size, and Building Massive Envelope Elements on the Seasonal Energy Performance of Heat Pump-Based Heating Systems," Energies, MDPI, vol. 13(19), pages 1-14, September.
    11. Zhenmin Yuan & Jianliang Zhou & Yaning Qiao & Yadi Zhang & Dandan Liu & Hui Zhu, 2020. "BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    12. Margarita-Niki Assimakopoulos & Dimitra Papadaki & Francesco Tariello & Giuseppe Peter Vanoli, 2020. "A Holistic Approach for Energy Renovation of the Town Hall Building in a Typical Small City of Southern Italy," Sustainability, MDPI, vol. 12(18), pages 1-36, September.
    13. Francesca Romana d’Ambrosio Alfano & Bjarne Wilkens Olesen & Daniela Pepe & Boris Igor Palella, 2023. "Working with Different Building Energy Performance Tools: From Input Data to Energy and Indoor Temperature Predictions," Energies, MDPI, vol. 16(2), pages 1-25, January.
    14. Sungjoon Byun & Seounghwan Hyeon & Kwan-Soo Lee, 2022. "Guide Vane for Thermal Enhancement of a LED Heat Sink," Energies, MDPI, vol. 15(7), pages 1-13, March.
    15. Sara Bonuso & Simone Panico & Cristina Baglivo & Domenico Mazzeo & Nicoletta Matera & Paolo Maria Congedo & Giuseppe Oliveti, 2020. "Dynamic Analysis of the Natural and Mechanical Ventilation of a Solar Greenhouse by Coupling Controlled Mechanical Ventilation (CMV) with an Earth-to-Air Heat Exchanger (EAHX)," Energies, MDPI, vol. 13(14), pages 1-22, July.
    16. Jin-Cherng Shyu & Tsuni Chang & Shun-Ching Lee, 2017. "A Numerical Study on Natural Convection Heat Transfer of Handheld Projectors with a Fin Array," Energies, MDPI, vol. 10(3), pages 1-17, February.
    17. Minzhi Ye & Ahmed A. Serageldin & Katsunori Nagano, 2023. "Numerical and Parametric Study on Open-Type Ceiling Radiant Cooling Panel with Curved and Segmented Structure," Energies, MDPI, vol. 16(6), pages 1-20, March.
    18. Santos-Herrero, J.M. & Lopez-Guede, J.M. & Flores-Abascal, I., 2021. "Modeling, simulation and control tools for nZEB: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Hyemi Kim & Kyung-soon Park & Soolyeon Cho & Young-hak Song, 2019. "A Study on Utility of Retrofit that Minimizes the Replacement of Heat-Source System in Large Offices," Energies, MDPI, vol. 12(22), pages 1-18, November.
    20. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3213-:d:374272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.