IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p720-d490135.html
   My bibliography  Save this article

Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks

Author

Listed:
  • Marcin Szott

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, St Prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland)

  • Szymon Wermiński

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, St Prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland)

  • Marcin Jarnut

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, St Prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland)

  • Jacek Kaniewski

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, St Prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland)

  • Grzegorz Benysek

    (Institute of Automatic Control, Electronics and Electrical Engineering, University of Zielona Góra, St Prof. Z. Szafrana 2, 65-516 Zielona Góra, Poland)

Abstract

This paper introduces the concept of a battery energy storage system as an emergency power supply for a separated power network, with the possibility of island operation for a power substation with one-side supply. This system, with an appropriately sized energy storage capacity, allows improvement in the continuity of the power supply and increases the reliability of the separated network at a specified time during the limitation of power transmission as a result of damage or disconnection of the main power line. This paper presents and describes a specific method of energy storage system dimensioning based on real measurement data. Based on the obtained parameters, an analysis of the reliability improvement of the considered network was performed. The implementation of the battery energy storage system will contribute to a more than 5-fold reduction in the occurrence of power outages in the time interval from 3 min to 1.5 h, which will clearly reduce the System Average Interruption Frequency Index and System Average Interruption Duration Index factors. In this paper, the network conditions for operational normality and failure are presented and the cost for implementation of an energy storage system (about EUR 1 million) is compared with the possible implementation of an additional power line (about EUR 5 million) to a specific power substation.

Suggested Citation

  • Marcin Szott & Szymon Wermiński & Marcin Jarnut & Jacek Kaniewski & Grzegorz Benysek, 2021. "Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks," Energies, MDPI, vol. 14(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:720-:d:490135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohd Ikhwan Muhammad Ridzuan & Sasa Z. Djokic, 2019. "Energy Regulator Supply Restoration Time," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Xin Li & Konstantinos J. Chalvatzis & Phedeas Stephanides, 2018. "Innovative Energy Islands: Life-Cycle Cost-Benefit Analysis for Battery Energy Storage," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    3. Ping Liu & Zexiang Cai & Peng Xie & Xiaohua Li & Yongjun Zhang, 2019. "A Computationally Efficient Optimization Method for Battery Storage in Grid-connected Microgrids Based on a Power Exchanging Process," Energies, MDPI, vol. 12(8), pages 1-19, April.
    4. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    5. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    6. Swaminathan Ganesan & Sanjeevikumar Padmanaban & Ramesh Varadarajan & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Study and Analysis of an Intelligent Microgrid Energy Management Solution with Distributed Energy Sources," Energies, MDPI, vol. 10(9), pages 1-21, September.
    7. Takashi Mitani & Muhammad Aziz & Takuya Oda & Atsuki Uetsuji & Yoko Watanabe & Takao Kashiwagi, 2017. "Annual Assessment of Large-Scale Introduction of Renewable Energy: Modeling of Unit Commitment Schedule for Thermal Power Generators and Pumped Storages," Energies, MDPI, vol. 10(6), pages 1-19, May.
    8. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    9. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    10. Farihan Mohamad & Jiashen Teh, 2018. "Impacts of Energy Storage System on Power System Reliability: A Systematic Review," Energies, MDPI, vol. 11(7), pages 1-23, July.
    11. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurul Hiron & Nundang Busaeri & Sutisna Sutisna & Nurmela Nurmela & Aceng Sambas, 2021. "Design of Hybrid (PV-Diesel) System for Tourist Island in Karimunjawa Indonesia," Energies, MDPI, vol. 14(24), pages 1-24, December.
    2. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    3. Qing Zhou & Yuelei Xu & Xin Qi & Zhaoxiang Zhang, 2022. "Design and Simulation of a Highly Reliable Modular High-Power Current Source," Energies, MDPI, vol. 15(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    2. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    3. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    4. Roberto Gómez-Calvet & José M. Martínez-Duart, 2019. "On the Assessment of the 2030 Power Sector Transition in Spain," Energies, MDPI, vol. 12(7), pages 1-17, April.
    5. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    6. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    7. Qing Zhou & Yuelei Xu & Xin Qi & Zhaoxiang Zhang, 2022. "Design and Simulation of a Highly Reliable Modular High-Power Current Source," Energies, MDPI, vol. 15(22), pages 1-18, November.
    8. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    9. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    10. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    11. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    12. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    13. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    15. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    16. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    17. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    18. Sulaiman A. Almohaimeed & Siddharth Suryanarayanan & Peter O’Neill, 2021. "Simulation Studies to Quantify the Impact of Demand Side Management on Environmental Footprint," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    19. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    20. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:720-:d:490135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.