IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7623-d943220.html
   My bibliography  Save this article

Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities

Author

Listed:
  • Marco Galici

    (Department of Electrical & Electronic Engineering, University of Cagliari, Via Marengo, 2-09123 Cagliari, Italy
    These authors contributed equally to this work.)

  • Mario Mureddu

    (Department of Electrical & Electronic Engineering, University of Cagliari, Via Marengo, 2-09123 Cagliari, Italy
    These authors contributed equally to this work.)

  • Emilio Ghiani

    (Department of Electrical & Electronic Engineering, University of Cagliari, Via Marengo, 2-09123 Cagliari, Italy)

  • Fabrizio Pilo

    (Department of Electrical & Electronic Engineering, University of Cagliari, Via Marengo, 2-09123 Cagliari, Italy)

Abstract

The development of local energy communities observed in the last years requires the reorganization of energy consumption and production. In these newly considered energy systems, the commercial and technical decision processes should be decentralized in order to reduce their maintenance costs. This will be allowed by the progressive spreading of IoT systems capable of interacting with distributed energy resources, giving local sources the ability to be optimally coordinated in terms of network and energy management. In this context, this paper presents a decentralized controlling architecture that performs a wide spectrum of power system optimization procedures oriented to the local market management. The controller framework is based on a decentralized genetic algorithm. The manuscript describes the structure of the tool and its validation, considering an automated distributed resource scheduling for local energy markets. The simulation platform permits implementing the blockchain-based trading process and the automated distributed resource scheduling. The effectiveness of the tool proposed is discussed with a hardware-in-the-loop case study.

Suggested Citation

  • Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2022. "Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities," Energies, MDPI, vol. 15(20), pages 1-25, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7623-:d:943220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    2. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    3. Sijie Chen & Hanning Mi & Jian Ping & Zheng Yan & Zeyu Shen & Xuezhi Liu & Ning Zhang & Qing Xia & Chongqing Kang, 2022. "A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading," Nature Energy, Nature, vol. 7(6), pages 495-502, June.
    4. Hani Muhsen & Adib Allahham & Ala’aldeen Al-Halhouli & Mohammed Al-Mahmodi & Asma Alkhraibat & Musab Hamdan, 2022. "Business Model of Peer-to-Peer Energy Trading: A Review of Literature," Sustainability, MDPI, vol. 14(3), pages 1-22, January.
    5. Binod Prasad Koirala & José Pablo Chaves Ávila & Tomás Gómez & Rudi A. Hakvoort & Paulien M. Herder, 2016. "Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems," Energies, MDPI, vol. 9(12), pages 1-24, November.
    6. Valeri Mladenov & Vesselin Chobanov & George Calin Seritan & Radu Florin Porumb & Bogdan-Adrian Enache & Vasiliki Vita & Marilena Stănculescu & Thong Vu Van & Dimitrios Bargiotas, 2022. "A Flexibility Market Platform for Electricity System Operators Using Blockchain Technology," Energies, MDPI, vol. 15(2), pages 1-26, January.
    7. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    8. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    9. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    10. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    11. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    12. Mureddu, Mario & Meyer-Ortmanns, Hildegard, 2018. "Extreme prices in electricity balancing markets from an approach of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1324-1334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    2. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    4. Kobashi, Takuro & Yoshida, Takahiro & Yamagata, Yoshiki & Naito, Katsuhiko & Pfenninger, Stefan & Say, Kelvin & Takeda, Yasuhiro & Ahl, Amanda & Yarime, Masaru & Hara, Keishiro, 2020. "On the potential of “Photovoltaics + Electric vehicles” for deep decarbonization of Kyoto’s power systems: Techno-economic-social considerations," Applied Energy, Elsevier, vol. 275(C).
    5. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    6. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    8. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    9. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    10. Ma, Chao-Qun & Lei, Yu-Tian & Ren, Yi-Shuai & Chen, Xun-Qi & Wang, Yi-Ran & Narayan, Seema, 2024. "Systematic analysis of the blockchain in the energy sector: Trends, issues, and future directions," Telecommunications Policy, Elsevier, vol. 48(2).
    11. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    12. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    13. Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).
    14. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    15. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    19. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Sophie Adams & Donal Brown & Juan Pablo Cárdenas Álvarez & Ruzanna Chitchyan & Michael J. Fell & Ulf J. J. Hahnel & Kristina Hojckova & Charlotte Johnson & Lurian Klein & Mehdi Montakhabi & Kelvin Say, 2021. "Social and Economic Value in Emerging Decentralized Energy Business Models: A Critical Review," Energies, MDPI, vol. 14(23), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7623-:d:943220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.