IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p362-d478438.html
   My bibliography  Save this article

The Influence of the Window Width on FRA Assessment with Numerical Indices

Author

Listed:
  • Szymon Banaszak

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Eugeniusz Kornatowski

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Wojciech Szoka

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

Abstract

Frequency response analysis is a method used in transformer diagnostics for the detection of mechanical faults or short-circuits in windings. The interpretation of test results is often performed with the application of numerical indices. However, usually these indices are used for the whole frequency range of the recorded data, returning a single number. Such an approach is inaccurate and may lead to mistakes in the interpretation. An alternative quality assessment is based on the estimation of the local values of the quality index with the moving window method. In this paper, the authors analyse the influence of the width of the input data window for four numerical indices. The analysis is based on the data measured on the transformer with deformations introduced into the winding and also for a 10 MVA transformer measured under industrial conditions. For the first unit the analysis is performed for various window widths and for various extents of the deformation, while in the case of the second the real differences between the frequency response curves are being analysed. On the basis of the results it was found that the choice of the data window width significantly influences the quality of the analysis results and the rules for elements number selection differ for various numerical indices.

Suggested Citation

  • Szymon Banaszak & Eugeniusz Kornatowski & Wojciech Szoka, 2021. "The Influence of the Window Width on FRA Assessment with Numerical Indices," Energies, MDPI, vol. 14(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:362-:d:478438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleh Alsuhaibani & Yasin Khan & Abderrahmane Beroual & Nazar Hussain Malik, 2016. "A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics," Energies, MDPI, vol. 9(11), pages 1-17, October.
    2. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    2. ZhenHua Li & Yujie Zhang & Ahmed Abu-Siada & Xingxin Chen & Zhenxing Li & Yanchun Xu & Lei Zhang & Yue Tong, 2021. "Fault Diagnosis of Transformer Windings Based on Decision Tree and Fully Connected Neural Network," Energies, MDPI, vol. 14(6), pages 1-14, March.
    3. Omid Elahi & Reza Behkam & Gevork B. Gharehpetian & Fazel Mohammadi, 2022. "Diagnosing Disk-Space Variation in Distribution Power Transformer Windings Using Group Method of Data Handling Artificial Neural Networks," Energies, MDPI, vol. 15(23), pages 1-32, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    2. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    3. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    4. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.
    6. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    7. Zhongyong Zhao & Chao Tang & Qu Zhou & Lingna Xu & Yingang Gui & Chenguo Yao, 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine," Energies, MDPI, vol. 10(12), pages 1-16, December.
    8. Eugeniusz Kornatowski & Szymon Banaszak, 2019. "Frequency Response Quality Index for Assessing the Mechanical Condition of Transformer Windings," Energies, MDPI, vol. 13(1), pages 1-15, December.
    9. Konstanty Marek Gawrylczyk & Katarzyna Trela, 2019. "Frequency Response Modeling of Transformer Windings Utilizing the Equivalent Parameters of a Laminated Core," Energies, MDPI, vol. 12(12), pages 1-14, June.
    10. Mehran Tahir & Stefan Tenbohlen, 2019. "A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model," Energies, MDPI, vol. 13(1), pages 1-25, December.
    11. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    12. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    13. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    14. Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
    15. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    16. Mehran Tahir & Stefan Tenbohlen, 2021. "Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements," Energies, MDPI, vol. 14(11), pages 1-25, May.
    17. Satoru Miyazaki, 2021. "Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data," Energies, MDPI, vol. 15(1), pages 1-14, December.
    18. Chunguang Suo & Yanan Ren & Wenbin Zhang & Yincheng Li & Yanyun Wang & Yi Ke, 2021. "Evaluation Method for Winding Performance of Distribution Transformer," Energies, MDPI, vol. 14(18), pages 1-25, September.
    19. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    20. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:362-:d:478438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.