IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p879-d81528.html
   My bibliography  Save this article

A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics

Author

Listed:
  • Saleh Alsuhaibani

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Yasin Khan

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Abderrahmane Beroual

    (Ecole Centrale de Lyon, University of Lyon, AMPERE Lab, CNRS UMR 5005, 36 Avenue Guy de Collongue, Ecully 69134, France)

  • Nazar Hussain Malik

    (Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

Power transformers play a critical role in electric power networks. Such transformers can suffer failures due to multiple stresses and aging. Thus, assessment of condition and diagnostic techniques are of great importance for improving power network reliability and service continuity. Several techniques are available to diagnose the faults within the power transformer. Frequency response analysis (FRA) method is a powerful technique for diagnosing transformer winding deformation and several other types of problems that are caused during manufacture, transportation, installation and/or service life. This paper provides a comprehensive review on FRA methods and their applications in diagnostics and fault identification for power transformers. The paper discusses theory and applications of FRA methods as well as various issues and challenges faced in the application of this method.

Suggested Citation

  • Saleh Alsuhaibani & Yasin Khan & Abderrahmane Beroual & Nazar Hussain Malik, 2016. "A Review of Frequency Response Analysis Methods for Power Transformer Diagnostics," Energies, MDPI, vol. 9(11), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:879-:d:81528
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/879/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeunggurl Yoon & Yongju Son & Jintae Cho & SuHyeong Jang & Young-Geun Kim & Sungyun Choi, 2021. "High-Frequency Modeling of a Three-Winding Power Transformer Using Sweep Frequency Response Analysis," Energies, MDPI, vol. 14(13), pages 1-10, July.
    2. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    3. Shuguo Gao & Chao Xing & Zhigang Zhang & Chenmeng Xiang & Haoyu Liu & Hongliang Liu & Rongbin Shi & Sihan Wang & Guoming Ma, 2022. "Early Warning of High-Voltage Reactor Defects Based on Acoustic–Electric Correlation," Energies, MDPI, vol. 15(19), pages 1-11, September.
    4. Regelii Suassuna de Andrade Ferreira & Patrick Picher & Fethi Meghnefi & Issouf Fofana & Hassan Ezzaidi & Christophe Volat & Vahid Behjat, 2023. "Reproducing Transformers’ Frequency Response from Finite Element Method (FEM) Simulation and Parameters Optimization," Energies, MDPI, vol. 16(11), pages 1-14, May.
    5. Zhongyong Zhao & Chao Tang & Qu Zhou & Lingna Xu & Yingang Gui & Chenguo Yao, 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine," Energies, MDPI, vol. 10(12), pages 1-16, December.
    6. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    7. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    8. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.
    10. Konstanty Marek Gawrylczyk & Katarzyna Trela, 2019. "Frequency Response Modeling of Transformer Windings Utilizing the Equivalent Parameters of a Laminated Core," Energies, MDPI, vol. 12(12), pages 1-14, June.
    11. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    12. Song Wang & Ze Guo & Ting Zhu & Hanke Feng & Shuhong Wang, 2018. "A New Multi-Conductor Transmission Line Model of Transformer Winding for Frequency Response Analysis Considering the Frequency-Dependent Property of the Lamination Core," Energies, MDPI, vol. 11(4), pages 1-12, April.
    13. Eugeniusz Kornatowski & Szymon Banaszak, 2019. "Frequency Response Quality Index for Assessing the Mechanical Condition of Transformer Windings," Energies, MDPI, vol. 13(1), pages 1-15, December.
    14. Szymon Banaszak & Eugeniusz Kornatowski & Wojciech Szoka, 2021. "The Influence of the Window Width on FRA Assessment with Numerical Indices," Energies, MDPI, vol. 14(2), pages 1-18, January.
    15. Benhui Lai & Shichang Yang & Heng Zhang & Yiyi Zhang & Xianhao Fan & Jiefeng Liu, 2020. "Performance Assessment of Oil-Immersed Cellulose Insulator Materials Using Time–Domain Spectroscopy under Varying Temperature and Humidity Conditions," Energies, MDPI, vol. 13(17), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:879-:d:81528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.