IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8035-d692849.html
   My bibliography  Save this article

A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime

Author

Listed:
  • Majid Dehghani

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran)

  • Mohammad Taghipour

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran)

  • Saleh Sadeghi Gougheri

    (Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran 196976-4499, Iran)

  • Amirhossein Nikoofard

    (Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran 196976-4499, Iran)

  • Gevork B. Gharehpetian

    (Department of Electrical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran)

  • Mahdi Khosravy

    (Cross Labs, Cross-Compass Ltd., Tokyo 104-0045, Japan)

Abstract

In Generation Expansion Planning (GEP), the power plants lifetime is one of the most important factors which to the best knowledge of the authors, has not been investigated in the literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep learning-based approaches are widely used for time series forecasting. Therefore, a new version of Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost of carbon is considered as the penalty of pollution in the objective function. The proposed approach is evaluated by a test network and then applied to Iran power system as a large-scale grid. The simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by 5.28% and 7.9% for the test system and Iran power system, respectively.

Suggested Citation

  • Majid Dehghani & Mohammad Taghipour & Saleh Sadeghi Gougheri & Amirhossein Nikoofard & Gevork B. Gharehpetian & Mahdi Khosravy, 2021. "A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime," Energies, MDPI, vol. 14(23), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8035-:d:692849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heejung Park, 2020. "Generation Capacity Expansion Planning Considering Hourly Dynamics of Renewable Resources," Energies, MDPI, vol. 13(21), pages 1-15, October.
    2. Rajesh, K. & Bhuvanesh, A. & Kannan, S. & Thangaraj, C., 2016. "Least cost generation expansion planning with solar power plant using Differential Evolution algorithm," Renewable Energy, Elsevier, vol. 85(C), pages 677-686.
    3. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    4. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    5. Peng Wang & Chunsheng Wang & Yukun Hu & Liz Varga & Wei Wang, 2018. "Power Generation Expansion Optimization Model Considering Multi-Scenario Electricity Demand Constraints: A Case Study of Zhejiang Province, China," Energies, MDPI, vol. 11(6), pages 1-15, June.
    6. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    7. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    8. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    9. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    10. Xiangyu Kong & Jingtao Yao & Zhijun E & Xin Wang, 2019. "Generation Expansion Planning Based on Dynamic Bayesian Network Considering the Uncertainty of Renewable Energy Resources," Energies, MDPI, vol. 12(13), pages 1-20, June.
    11. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2016. "Multistage generation expansion planning incorporating large scale energy storage systems and environmental pollution," Renewable Energy, Elsevier, vol. 97(C), pages 636-645.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomonobu Senjyu & Mahdi Khosravy, 2022. "Power System Planning and Quality Control," Energies, MDPI, vol. 15(14), pages 1-2, July.
    2. Seyed Hamed Jalalzad & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    3. Bibi Ibrahim & Luis Rabelo & Alfonso T. Sarmiento & Edgar Gutierrez-Franco, 2023. "A Holistic Approach to Power Systems Using Innovative Machine Learning and System Dynamics," Energies, MDPI, vol. 16(13), pages 1-29, July.
    4. Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
    5. Ali Ahmadian & Kumaraswamy Ponnambalam & Ali Almansoori & Ali Elkamel, 2023. "Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning," Energies, MDPI, vol. 16(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    3. Seyed Hamed Jalalzad & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    4. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    5. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    6. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    7. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    8. Ji, Ling & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao & Song, Yi-Hang, 2017. "Explicit cost-risk tradeoff for renewable portfolio standard constrained regional power system expansion: A case study of Guangdong Province, China," Energy, Elsevier, vol. 131(C), pages 125-136.
    9. Javadi, Mohammad Sadegh & Razavi, Seyed-Ehsan & Ahmadi, Abdollah & Siano, Pierluigi, 2019. "A novel approach for distant wind farm interconnection: Iran South-West wind farms integration," Renewable Energy, Elsevier, vol. 140(C), pages 737-750.
    10. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    11. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).
    12. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    13. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    16. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    17. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    18. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    19. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    20. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8035-:d:692849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.