IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7730-d681887.html
   My bibliography  Save this article

DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure

Author

Listed:
  • Maximiliano Lainfiesta Herrera

    (Rocky Mountain Institute (RMI), Boulder, CO 80301, USA)

  • Hassan S. Hayajneh

    (The Department of Electrical Engineering and Computer Science, College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

  • Xuewei Zhang

    (The Department of Electrical Engineering and Computer Science, College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

Abstract

Serious environmental concerns call for revolutionary solutions to cope with the harmful effects of the conventional energy landscape. Therefore, residential and commercial customers require cleaner and more reliable energy sources as they become more dependent on energy for daily and critical needs. In this case, transitioning to a cleaner energy economy is of paramount importance for both the environment and the utilities as well as the end-users. The desired transformation will require the deployment of massive amounts of clean energy sources. Many of these resources, such as solar photovoltaic (PV), provide electricity in the form of direct current (DC) that enables the return of DC grids to the electric power arena. The electric system has slowly transitioned to DC, mainly on the demand side. In recent years, modern electronic devices, lighting systems, and an increased number of appliances (≈22% of the residential and commercial loads) have adopted DC systems. Studies suggest that DC loads would account for more than 50% of the available loads in the next few years. Furthermore, the growing proliferation of electric vehicles influx is another example of a successful DC application. From this perspective, the viability of returning to the DC distribution system in the form of DC community grids is explored. We start by defining the DC community grid, which is followed by introducing the benefits of adopting DC at the distribution level. Finally, a summarizing outlook of successful pilot cases, projections of DC community deployment, barriers and concerns, strategies to address barriers and concerns, and suggestions for future research directions are presented. This perspective could shed new light on the building blocks of the transformed energy landscape for various stakeholders.

Suggested Citation

  • Maximiliano Lainfiesta Herrera & Hassan S. Hayajneh & Xuewei Zhang, 2021. "DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure," Energies, MDPI, vol. 14(22), pages 1-8, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7730-:d:681887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    3. Dierk Bauknecht & Allan Dahl Andersen & Karoline Dunne, 2020. "Challenges for electricity network governance in Energy transitions: Insights from Norway," Working Papers on Innovation Studies 20200115, Centre for Technology, Innovation and Culture, University of Oslo.
    4. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    5. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    6. Singh, Suresh & Gautam, Aditya R. & Fulwani, Deepak, 2017. "Constant power loads and their effects in DC distributed power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 407-421.
    7. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    8. Kitson, J. & Williamson, S.J. & Harper, P.W. & McMahon, C.A. & Rosenberg, G. & Tierney, M.J. & Bell, K. & Gautam, B., 2018. "Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities," Energy, Elsevier, vol. 160(C), pages 142-153.
    9. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," Applied Energy, Elsevier, vol. 255(C).
    10. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    11. Venkata Anand Prabhala & Bhanu Prashant Baddipadiga & Poria Fajri & Mehdi Ferdowsi, 2018. "An Overview of Direct Current Distribution System Architectures & Benefits," Energies, MDPI, vol. 11(9), pages 1-20, September.
    12. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    13. Christoph Bertram & Gunnar Luderer & Felix Creutzig & Nico Bauer & Falko Ueckerdt & Aman Malik & Ottmar Edenhofer, 2021. "COVID-19-induced low power demand and market forces starkly reduce CO2 emissions," Nature Climate Change, Nature, vol. 11(3), pages 193-196, March.
    14. Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    15. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    16. Burandt, Thorsten & Xiong, Bobby & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Decarbonizing China’s energy system – Modeling the transformation of the electricity, transportation, heat, and industrial sectors," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 255, pages 1-17.
    17. Hossain, M.Z. & Rahim, N.A. & Selvaraj, Jeyraj a/l, 2018. "Recent progress and development on power DC-DC converter topology, control, design and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 205-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    3. Lim, Kai Zhuo & Lim, Kang Hui & Wee, Xian Bin & Li, Yinan & Wang, Xiaonan, 2020. "Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling," Applied Energy, Elsevier, vol. 269(C).
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    6. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    9. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    11. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    12. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    13. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    14. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
    15. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    16. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    17. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    18. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    19. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    20. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7730-:d:681887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.