IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2463-d170212.html
   My bibliography  Save this article

An Overview of Direct Current Distribution System Architectures & Benefits

Author

Listed:
  • Venkata Anand Prabhala

    (Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO 65401, USA)

  • Bhanu Prashant Baddipadiga

    (Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO 65401, USA)

  • Poria Fajri

    (Electrical and Biomedical Engineering Department, University of Nevada, Reno, NV 89557, USA)

  • Mehdi Ferdowsi

    (Electrical and Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO 65401, USA)

Abstract

This paper examines existing and future direct current (DC) distribution systems with a wide range of applications in data centers, telecommunication systems, commercial buildings, residential homes, electric vehicles, spacecraft, and aircrafts. DC distribution systems have many advantages and disadvantages over their alternating current (AC) counterparts. There are a few surviving examples of DC distribution systems; among them are the telecommunication systems and data centers that use the low-voltage 48 Vdc systems. However, recently, there has been a move towards higher DC bus voltages. In this paper, a comparative study of different DC distribution architectures and bus structures is presented and voltage level selection is discussed for maximizing system efficiency and reliability, reducing system costs, and increasing the flexibility of the system for future expansion. Furthermore, DC distribution systems are investigated from a safety standpoint and the current global market for these distribution systems is also discussed.

Suggested Citation

  • Venkata Anand Prabhala & Bhanu Prashant Baddipadiga & Poria Fajri & Mehdi Ferdowsi, 2018. "An Overview of Direct Current Distribution System Architectures & Benefits," Energies, MDPI, vol. 11(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2463-:d:170212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hernández, J.C. & Vidal, P.G. & Medina, A., 2010. "Characterization of the insulation and leakage currents of PV generators: Relevance for human safety," Renewable Energy, Elsevier, vol. 35(3), pages 593-601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Mariscotti, 2021. "Power Quality Phenomena, Standards, and Proposed Metrics for DC Grids," Energies, MDPI, vol. 14(20), pages 1-41, October.
    2. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    3. José M. Maza-Ortega & Juan M. Mauricio & Manuel Barragán-Villarejo & Charis Demoulias & Antonio Gómez-Expósito, 2019. "Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks," Energies, MDPI, vol. 12(19), pages 1-22, September.
    4. Boning Wu & Xuesong Zhou & Youjie Ma, 2020. "Bus Voltage Control of DC Distribution Network Based on Sliding Mode Active Disturbance Rejection Control Strategy," Energies, MDPI, vol. 13(6), pages 1-21, March.
    5. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    6. Avpreet Othee & James Cale & Arthur Santos & Stephen Frank & Daniel Zimmerle & Omkar Ghatpande & Gerald Duggan & Daniel Gerber, 2023. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings," Energies, MDPI, vol. 16(7), pages 1-46, March.
    7. Arthur Santos & Gerald Duggan & Stephen Frank & Daniel Gerber & Daniel Zimmerle, 2021. "Endpoint Use Efficiency Comparison for AC and DC Power Distribution in Commercial Buildings," Energies, MDPI, vol. 14(18), pages 1-24, September.
    8. Young-Maan Cho & Hyun-Jong Park & Jae-Jun Lee & Kun-A Lee, 2022. "Analysis of Characteristics of Low Voltage Circuit Breaker by External Magnetic Field," Energies, MDPI, vol. 15(21), pages 1-15, November.
    9. Ahmed Y. Farag & Tarek Younis & Davide Biadene & Paolo Mattavelli, 2023. "AC Grid–DC Microgrid Coupling with High-Performance Three-Phase Single-Stage Bidirectional Converters," Energies, MDPI, vol. 16(17), pages 1-16, August.
    10. Moazzam Nazir & Omkar Ghatpande & Willy Bernal Heredia & Cameron Wierzbanowski & Daniel Gerber & Avijit Saha, 2021. "Standardizing Performance Metrics for Building-Level Electrical Distribution Systems," Energies, MDPI, vol. 15(1), pages 1-18, December.
    11. Van-Long Pham & Keiji Wada, 2020. "Applications of Triple Active Bridge Converter for Future Grid and Integrated Energy Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    12. Chunwang Xiaogeng LiRen & Xiaojun Ma & Fuxiang Chen & Zhicheng Yang & Sandeep Panchal, 2022. "Simulation and inspection of fault arc in building energy-saving distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 331-339, March.
    13. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    14. Andrea Mariscotti & Leonardo Sandrolini & Mattia Simonazzi, 2022. "Supraharmonic Emissions from DC Grid Connected Wireless Power Transfer Converters," Energies, MDPI, vol. 15(14), pages 1-21, July.
    15. Maximiliano Lainfiesta Herrera & Hassan S. Hayajneh & Xuewei Zhang, 2021. "DC Communities: Transformative Building Blocks of the Emerging Energy Infrastructure," Energies, MDPI, vol. 14(22), pages 1-8, November.
    16. Jianjia He & Thi Hoai Thuong Mai, 2021. "The Circular Economy: A Study on the Use of Airbnb for Sustainable Coastal Development in the Vietnam Mekong Delta," Sustainability, MDPI, vol. 13(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    2. Rajput, Pramod & Shyam, & Tomar, Vivek & Tiwari, G.N. & Sastry, O.S. & Bhatti, T.S., 2018. "A thermal model for N series connected glass/cell/polymer sheet and glass/cell/glass crystalline silicon photovoltaic modules with hot solar cells connected in series and its thermal losses in real ou," Renewable Energy, Elsevier, vol. 126(C), pages 370-386.
    3. Chine, W. & Mellit, A. & Lughi, V. & Malek, A. & Sulligoi, G. & Massi Pavan, A., 2016. "A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks," Renewable Energy, Elsevier, vol. 90(C), pages 501-512.
    4. Silvestre, Santiago & Kichou, Sofiane & Chouder, Aissa & Nofuentes, Gustavo & Karatepe, Engin, 2015. "Analysis of current and voltage indicators in grid connected PV (photovoltaic) systems working in faulty and partial shading conditions," Energy, Elsevier, vol. 86(C), pages 42-50.
    5. Muñoz, J.V. & Nofuentes, G. & Aguilera, J. & Fuentes, M. & Vidal, P.G., 2011. "Procedure to carry out quality checks in photovoltaic grid-connected systems: Six cases of study," Applied Energy, Elsevier, vol. 88(8), pages 2863-2870, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2463-:d:170212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.