IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v110y2019icp13-27.html
   My bibliography  Save this article

Impact of evolving technology on collaborative energy access scaling

Author

Listed:
  • Ray, Manojit
  • Chakraborty, Basab

Abstract

Worldwide, more than a billion rural dwellers live without electricity. Billions more endure awfully intermittent service even when connected to the grid. Most of these access challenged communities are in the Global South and may benefit from surging spread of distributed energy resources. However, associated investment necessity is large and so is the time required to address infrastructural bottlenecks. Recognising criticality of universal access to affordable, eco-friendly and reliable electricity in inclusive human development, the United Nations adopted ‘affordable and clean energy’ as one of the Sustainable Development Goals. To treasure electricity access, measurement of the same is important. The evolution of electricity access measurement has given rise to multi-tier, multi-parameter matrix. This improved measurement framework has facilitated researchers and policymakers in capturing various electricity access parameters in order to script focused energy strategy for the common man. This paper studies electricity availability, consumer aspiration and prevailing consumption in an impoverished, isolated, high-altitude valley, nestled in the Himalayas in India. It outlines evolving technology-aided, access measurement supported innovative access tier advancement opportunities in the valley. The result underscores the importance of consumer-focused approach for improving infrastructure utilisation. Consumer collaboration may result in fast, economical access advancement. Supply reliability may transform from abrupt complete disruption to gradual, cognisant decay. Such transition may encourage consumers to avoid costly, individual backup and instead use available resources sensibly. Embedding aspiration-supporting nudge in electricity regulation may promote co-operation, helping empowered consumers in scaling access tier affordably.

Suggested Citation

  • Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
  • Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:13-27
    DOI: 10.1016/j.rser.2019.04.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    2. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    3. Comello, Stephen & Reichelstein, Stefan J. & Sahoo, Anshuman, 2018. "The Road ahead for Solar PV Power," Research Papers 3620, Stanford University, Graduate School of Business.
    4. Erlinghagen, Sabine & Lichtensteiger, Bill & Markard, Jochen, 2015. "Smart meter communication standards in Europe – a comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1249-1262.
    5. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    6. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    7. Komiyama, Ryoichi & Fujii, Yasumasa, 2019. "Optimal integration assessment of solar PV in Japan’s electric power grid," Renewable Energy, Elsevier, vol. 139(C), pages 1012-1028.
    8. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    9. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    10. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    11. Singh, Vivek Kumar & Henriques, Carla Oliveira & Martins, António Gomes, 2018. "Fostering investment on energy efficient appliances in India–A multi-perspective economic input-output lifecycle assessment," Energy, Elsevier, vol. 149(C), pages 1022-1035.
    12. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    13. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    14. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    15. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    16. Kasperbauer, T.J., 2017. "The permissibility of nudging for sustainable energy consumption," Energy Policy, Elsevier, vol. 111(C), pages 52-57.
    17. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    18. Comello, Stephen & Reichelstein, Stefan & Sahoo, Anshuman, 2018. "The road ahead for solar PV power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 744-756.
    19. Riley, Paul H., 2014. "Affordability for sustainable energy development products," Applied Energy, Elsevier, vol. 132(C), pages 308-316.
    20. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    21. Shukla, Akash Kumar & Sudhakar, K. & Baredar, Prashant & Mamat, Rizalman, 2018. "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3314-3322.
    22. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    23. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    24. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    25. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    26. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.
    27. Peter Alstone & Dimitry Gershenson & Daniel M. Kammen, 2015. "Decentralized energy systems for clean electricity access," Nature Climate Change, Nature, vol. 5(4), pages 305-314, April.
    28. Terrapon-Pfaff, Julia & Gröne, Marie-Christine & Dienst, Carmen & Ortiz, Willington, 2018. "Productive use of energy – Pathway to development? Reviewing the outcomes and impacts of small-scale energy projects in the global south," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 198-209.
    29. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    30. Momsen, Katharina & Stoerk, Thomas, 2014. "From intention to action: Can nudges help consumers to choose renewable energy?," Energy Policy, Elsevier, vol. 74(C), pages 376-382.
    31. Kennedy, Ryan & Mahajan, Aseem & Urpelainen, Johannes, 2019. "Quality of service predicts willingness to pay for household electricity connections in rural India," Energy Policy, Elsevier, vol. 129(C), pages 319-326.
    32. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    33. Kristine Bos & Duncan Chaplin & Arif Mamun, "undated". "Benefits and Challenges of Expanding Grid Electricity in Africa: A Review of Rigorous Evidence on Household Impacts in Developing Countries," Mathematica Policy Research Reports 4df837297b3a490e922d53edf, Mathematica Policy Research.
    34. Lorde, Troy & Waithe, Kimberly & Francis, Brian, 2010. "The importance of electrical energy for economic growth in Barbados," Energy Economics, Elsevier, vol. 32(6), pages 1411-1420, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
    2. Ray, Manojit & Chakraborty, Basab, 2021. "Impact of demand response on escalating energy access with affordable solar photovoltaic generation in the Global South," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    4. Laurence L. Delina, 2020. "A rural energy collaboratory: co-production in Thailand’s community energy experiments," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 10(1), pages 83-90, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    3. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    4. Gao, Jianwei & Ma, Zeyang & Guo, Fengjia, 2019. "The influence of demand response on wind-integrated power system considering participation of the demand side," Energy, Elsevier, vol. 178(C), pages 723-738.
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    7. Davarzani, Sima & Granell, Ramon & Taylor, Gareth A. & Pisica, Ioana, 2019. "Implementation of a novel multi-agent system for demand response management in low-voltage distribution networks," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.
    9. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Golla, Armin & Röhrig, Nicole & Staudt, Philipp & Weinhardt, Christof, 2022. "Evaluating the impact of regulation on the path of electrification in Citizen Energy Communities with prosumer investment," Applied Energy, Elsevier, vol. 319(C).
    11. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    12. Ugwoke, B. & Sulemanu, S. & Corgnati, S.P. & Leone, P. & Pearce, J.M., 2021. "Demonstration of the integrated rural energy planning framework for sustainable energy development in low-income countries: Case studies of rural communities in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Thakur, Jagruti & Rauner, Sebastian & Darghouth, Naïm R. & Chakraborty, Basab, 2018. "Exploring the impact of increased solar deployment levels on residential electricity bills in India," Renewable Energy, Elsevier, vol. 120(C), pages 512-523.
    14. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    17. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    18. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    19. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    20. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:13-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.