IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7572-d677898.html
   My bibliography  Save this article

Increasing the Safety of Adaptive Cruise Control Using Physics-Guided Reinforcement Learning

Author

Listed:
  • Sorin Liviu Jurj

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

  • Dominik Grundt

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

  • Tino Werner

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

  • Philipp Borchers

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

  • Karina Rothemann

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

  • Eike Möhlmann

    (OFFIS e.V. Institute for Information Technology, Escherweg 2, 26121 Oldenburg, Germany)

Abstract

This paper presents a novel approach for improving the safety of vehicles equipped with Adaptive Cruise Control (ACC) by making use of Machine Learning (ML) and physical knowledge. More exactly, we train a Soft Actor-Critic (SAC) Reinforcement Learning (RL) algorithm that makes use of physical knowledge such as the jam-avoiding distance in order to automatically adjust the ideal longitudinal distance between the ego- and leading-vehicle, resulting in a safer solution. In our use case, the experimental results indicate that the physics-guided (PG) RL approach is better at avoiding collisions at any selected deceleration level and any fleet size when compared to a pure RL approach, proving that a physics-informed ML approach is more reliable when developing safe and efficient Artificial Intelligence (AI) components in autonomous vehicles (AVs).

Suggested Citation

  • Sorin Liviu Jurj & Dominik Grundt & Tino Werner & Philipp Borchers & Karina Rothemann & Eike Möhlmann, 2021. "Increasing the Safety of Adaptive Cruise Control Using Physics-Guided Reinforcement Learning," Energies, MDPI, vol. 14(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7572-:d:677898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pengwei Wang & Song Gao & Liang Li & Binbin Sun & Shuo Cheng, 2019. "Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on an Improved Artificial Potential Field Algorithm," Energies, MDPI, vol. 12(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sorin Liviu Jurj & Tino Werner & Dominik Grundt & Willem Hagemann & Eike Möhlmann, 2022. "Towards Safe and Sustainable Autonomous Vehicles Using Environmentally-Friendly Criticality Metrics," Sustainability, MDPI, vol. 14(12), pages 1-52, June.
    2. Arno Eichberger & Zsolt Szalay & Martin Fellendorf & Henry Liu, 2022. "Advances in Automated Driving Systems," Energies, MDPI, vol. 15(10), pages 1-5, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Abdallaoui & El-Hassane Aglzim & Ahmed Chaibet & Ali Kribèche, 2022. "Thorough Review Analysis of Safe Control of Autonomous Vehicles: Path Planning and Navigation Techniques," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Tao Wang & Dayi Qu & Hui Song & Shouchen Dai, 2023. "A Hierarchical Framework of Decision Making and Trajectory Tracking Control for Autonomous Vehicles," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Pedro Bautista-Camino & Alejandro I. Barranco-Gutiérrez & Ilse Cervantes & Martin Rodríguez-Licea & Juan Prado-Olivarez & Francisco J. Pérez-Pinal, 2022. "Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion," Energies, MDPI, vol. 15(5), pages 1-23, February.
    4. Leon Prochowski & Mateusz Ziubiński & Patryk Szwajkowski & Mirosław Gidlewski & Tomasz Pusty & Tomasz Lech Stańczyk, 2021. "Impact of Control System Model Parameters on the Obstacle Avoidance by an Autonomous Car-Trailer Unit: Research Results," Energies, MDPI, vol. 14(10), pages 1-31, May.
    5. Kazuki Nonoyama & Ziang Liu & Tomofumi Fujiwara & Md Moktadir Alam & Tatsushi Nishi, 2022. "Energy-Efficient Robot Configuration and Motion Planning Using Genetic Algorithm and Particle Swarm Optimization," Energies, MDPI, vol. 15(6), pages 1-20, March.
    6. Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.
    7. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7572-:d:677898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.