Local Path Planning for Autonomous Vehicles Based on the Natural Behavior of the Biological Action-Perception Motion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Pengwei Wang & Song Gao & Liang Li & Binbin Sun & Shuo Cheng, 2019. "Obstacle Avoidance Path Planning Design for Autonomous Driving Vehicles Based on an Improved Artificial Potential Field Algorithm," Energies, MDPI, vol. 12(12), pages 1-14, June.
- Alessia Musa & Michele Pipicelli & Matteo Spano & Francesco Tufano & Francesco De Nola & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul & Gianluca Toscano, 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carlos Escobar & Francisco J. Vargas & Andrés A. Peters & Gonzalo Carvajal, 2023. "A Cooperative Control Algorithm for Line and Predecessor Following Platoons Subject to Unreliable Distance Measurements," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sara Abdallaoui & El-Hassane Aglzim & Ahmed Chaibet & Ali Kribèche, 2022. "Thorough Review Analysis of Safe Control of Autonomous Vehicles: Path Planning and Navigation Techniques," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Tao Wang & Dayi Qu & Hui Song & Shouchen Dai, 2023. "A Hierarchical Framework of Decision Making and Trajectory Tracking Control for Autonomous Vehicles," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
- Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
- Sorin Liviu Jurj & Dominik Grundt & Tino Werner & Philipp Borchers & Karina Rothemann & Eike Möhlmann, 2021. "Increasing the Safety of Adaptive Cruise Control Using Physics-Guided Reinforcement Learning," Energies, MDPI, vol. 14(22), pages 1-19, November.
- Leon Prochowski & Mateusz Ziubiński & Patryk Szwajkowski & Mirosław Gidlewski & Tomasz Pusty & Tomasz Lech Stańczyk, 2021. "Impact of Control System Model Parameters on the Obstacle Avoidance by an Autonomous Car-Trailer Unit: Research Results," Energies, MDPI, vol. 14(10), pages 1-31, May.
- David Sotelo & Antonio Favela-Contreras & Alfonso Avila & Arturo Pinto & Francisco Beltran-Carbajal & Carlos Sotelo, 2022. "A New Software-Based Optimization Technique for Embedded Latency Improvement of a Constrained MIMO MPC," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
- Maciej Ławryńczuk & Piotr M. Marusak & Patryk Chaber & Dawid Seredyński, 2022. "Initialisation of Optimisation Solvers for Nonlinear Model Predictive Control: Classical vs. Hybrid Methods," Energies, MDPI, vol. 15(7), pages 1-21, March.
- Yesid Bello & Juan Sebastian Roncancio & Toufik Azib & Diego Patino & Cherif Larouci & Moussa Boukhnifer & Nassim Rizoug & Fredy Ruiz, 2023. "Practical Nonlinear Model Predictive Control for Improving Two-Wheel Vehicle Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-26, February.
- Kazuki Nonoyama & Ziang Liu & Tomofumi Fujiwara & Md Moktadir Alam & Tatsushi Nishi, 2022. "Energy-Efficient Robot Configuration and Motion Planning Using Genetic Algorithm and Particle Swarm Optimization," Energies, MDPI, vol. 15(6), pages 1-20, March.
- Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.
- Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
More about this item
Keywords
local path planning; autonomous vehicles; obstacles avoidance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1769-:d:760308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.