IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7089-d668440.html
   My bibliography  Save this article

Prospects for the Use of Hydrogen in the Armed Forces

Author

Listed:
  • Andrzej Soboń

    (National Security Faculty, War Studies University, 00-910 Warsaw, Poland)

  • Daniel Słyś

    (The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Mariusz Ruszel

    (The Faculty of Management, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Alicja Wiącek

    (Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

The energy security landscape that we envisage in 2050 will be different from that of today. Meeting the future energy needs of the armed forces will be a key challenge, not least for military security. The World Energy Council’s World Energy Scenarios forecast that the world’s population will rise to 10 billion by 2050, which will also necessitate an increase in the size of the armed forces. In this context, energy extraction, distribution, and storage become essential to stabilizing the imbalance between production and demand. Among the available solutions, Power to Hydrogen (P2H) is one of the most appealing options. However, despite the potential, many obstacles currently hinder the development of the P2H market. This article aims to identify and analyse existing barriers to the introduction of P2H technologies that use hydrogen. The holistic approach used, which was based on a literature survey, identified obstacles and possible strategies for overcoming them. The research conducted presents an original research contribution at the level of hydrogen strategies considered in leading countries around the world. The research findings identified unresolved regulatory issues and sources of uncertainty in the armed forces. There is a lack of knowledge in the armed forces of some countries about the process of producing hydrogen energy and its benefits, which raises concerns about the consistency of its exploitation. Negative attitudes towards hydrogen fuel energy can be a significant barrier to its deployment in the armed forces. Possible approaches and solutions have also been proposed to eliminate obstacles and to support decision makers in defining and implementing a strategy for hydrogen as a clean energy carrier. There are decisive and unresolved obstacles to its deployment, not only in the armed forces.

Suggested Citation

  • Andrzej Soboń & Daniel Słyś & Mariusz Ruszel & Alicja Wiącek, 2021. "Prospects for the Use of Hydrogen in the Armed Forces," Energies, MDPI, vol. 14(21), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7089-:d:668440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Ingeborgrud, Lina & Ryghaug, Marianne, 2019. "The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 507-516.
    3. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.
    4. Shunichi Hienuki & Yoshie Hirayama & Tadahiro Shibutani & Junji Sakamoto & Jo Nakayama & Atsumi Miyake, 2019. "How Knowledge about or Experience with Hydrogen Fueling Stations Improves Their Public Acceptance," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    5. Hamdan, Mohammad O. & Selim, Mohamed Y.E. & Al-Omari, Salah-A.B. & Elnajjar, Emad, 2015. "Hydrogen supplement co-combustion with diesel in compression ignition engine," Renewable Energy, Elsevier, vol. 82(C), pages 54-60.
    6. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    7. Simonas Cerniauskas & Thomas Grube & Aaron Praktiknjo & Detlef Stolten & Martin Robinius, 2019. "Future Hydrogen Markets for Transportation and Industry: The Impact of CO 2 Taxes," Energies, MDPI, vol. 12(24), pages 1-26, December.
    8. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    9. A. C. Dillon & K. M. Jones & T. A. Bekkedahl & C. H. Kiang & D. S. Bethune & M. J. Heben, 1997. "Storage of hydrogen in single-walled carbon nanotubes," Nature, Nature, vol. 386(6623), pages 377-379, March.
    10. Chen, T. Donna & Wang, Yiyi & Kockelman, Kara M., 2015. "Where are the electric vehicles? A spatial model for vehicle-choice count data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 181-188.
    11. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe," Journal of Transport Geography, Elsevier, vol. 78(C), pages 214-229.
    12. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    13. Ibrahem E. Atawi & Ahmed M. Kassem, 2017. "Optimal Control Based on Maximum Power Point Tracking (MPPT) of an Autonomous Hybrid Photovoltaic/Storage System in Micro Grid Applications," Energies, MDPI, vol. 10(5), pages 1-14, May.
    14. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Budzik & Krzysztof Tomaszewski & Andrzej Soboń, 2022. "Opportunities for the Application of 3D Printing in the Critical Infrastructure System," Energies, MDPI, vol. 15(5), pages 1-15, February.
    2. Beata Piotrowska & Daniel Słyś, 2022. "Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    4. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    5. Haustein, Sonja & Jensen, Anders Fjendbo & Cherchi, Elisabetta, 2021. "Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications," Energy Policy, Elsevier, vol. 149(C).
    6. Illmann, Ulrike & Kluge, Jan, 2019. "Public Charging Infrastructure and the Market Diffusion of Electric Vehicles," IHS Working Paper Series 9, Institute for Advanced Studies.
    7. Caulfield, Brian & Furszyfer, Dylan & Stefaniec, Agnieszka & Foley, Aoife, 2022. "Measuring the equity impacts of government subsidies for electric vehicles," Energy, Elsevier, vol. 248(C).
    8. Han, Guopeng & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Wei, Hongyuan, 2017. "Mechanism analysis on controllable methanol quick combustion," Applied Energy, Elsevier, vol. 206(C), pages 558-567.
    9. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    11. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    12. Chakraborty, Debapriya & Bunch, David S. & Brownstone, David & Xu, Bingzheng & Tal, Gil, 2022. "Plug-in electric vehicle diffusion in California: Role of exposure to new technology at home and work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 133-151.
    13. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    14. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    15. Zehua Li & Jiaran Niu & Zhenzhou Li & Yukun Chen & Yang Wang & Bin Jiang, 2022. "The Impact of Individual Differences on the Acceptance of Self-Driving Buses: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    16. Kamile Petrauskiene & Jolanta Dvarioniene & Giedrius Kaveckis & Daina Kliaugaite & Julie Chenadec & Leonie Hehn & Berta Pérez & Claudio Bordi & Giorgio Scavino & Andrea Vignoli & Michael Erman, 2020. "Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    17. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    18. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    19. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    20. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7089-:d:668440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.