IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v156y2022icp133-151.html
   My bibliography  Save this article

Plug-in electric vehicle diffusion in California: Role of exposure to new technology at home and work

Author

Listed:
  • Chakraborty, Debapriya
  • Bunch, David S.
  • Brownstone, David
  • Xu, Bingzheng
  • Tal, Gil

Abstract

The market for plug-in electric vehicles (PEVs) --including both battery electric vehicles (BEVs) and plug-in hybrid vehicles (PHEVs)--has been rapidly growing in California for the past few years. Given the targets for PEV penetration in the state, it is important to have a better understanding of the pattern of technology diffusion and the factors that are driving the process. Using spatial analysis and Poisson count models we identify the importance of a neighborhood effect (at home locations) and a workplace effect (at commute destinations) in supporting the diffusion of PEV technology in California between 2014 and 2016. In the case of new BEV sales, we find that exposure to one additional BEV or PHEV within a 1-mile radius of a census block group centroid is associated with a 0.2% increase in BEV sales in the block group. Interestingly, for new PHEV sales- the neighborhood effect of BEV sales is negative, suggesting that enhanced exposure to this type of technology (which is differentiated in distinctive ways from PHEVs) may impact new PHEV sales through a substitution effect. Specifically, higher BEV concentration in an area can have an overall negative effect on new PHEV sales. While the neighborhood effect at residential locations is important, a workplace effect also has a notably important influence on new PEV sales. Both effects work in combination with socioeconomic, demographic, policy, and built environment factors in encouraging PEV adoption. These results, insightful not just for California but other regions in early phases of the PEV market, suggest that policymakers should consider targeted programs and investments that can attract a wider group of early adopters (in terms of sociodemographic characteristics and spatial location) to boost the impact of neighborhood and workplace effects on PEV sales.

Suggested Citation

  • Chakraborty, Debapriya & Bunch, David S. & Brownstone, David & Xu, Bingzheng & Tal, Gil, 2022. "Plug-in electric vehicle diffusion in California: Role of exposure to new technology at home and work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 133-151.
  • Handle: RePEc:eee:transa:v:156:y:2022:i:c:p:133-151
    DOI: 10.1016/j.tra.2021.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421003190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    2. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    3. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    4. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.
    5. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
    6. Oliveira, Gabriela D. & Roth, Richard & Dias, Luis C., 2019. "Diffusion of alternative fuel vehicles considering dynamic preferences," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 83-99.
    7. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    8. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    9. Marcello Graziano & Kenneth Gillingham, 2015. "Spatial patterns of solar photovoltaic system adoption: The influence of neighbors and the built environment," Journal of Economic Geography, Oxford University Press, vol. 15(4), pages 815-839.
    10. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    11. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    12. Brownstone, David & Golob, Thomas F., 2009. "The impact of residential density on vehicle usage and energy consumption," Journal of Urban Economics, Elsevier, vol. 65(1), pages 91-98, January.
    13. Jenn, Alan & Azevedo, Inês L. & Ferreira, Pedro, 2013. "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, Elsevier, vol. 40(C), pages 936-942.
    14. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    15. Hardman, Scott, 2019. "Understanding the impact of reoccurring and non-financial incentives on plug-in electric vehicle adoption – A review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 1-14.
    16. Chen, T. Donna & Wang, Yiyi & Kockelman, Kara M., 2015. "Where are the electric vehicles? A spatial model for vehicle-choice count data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 181-188.
    17. Tal, Gil & Nicholas, Michael A, 2014. "Exploring the Impact of High Occupancy Vehicle (HOV) Lane Access on Plug-in Vehicle Sales and Usage in California," Institute of Transportation Studies, Working Paper Series qt7hw5899j, Institute of Transportation Studies, UC Davis.
    18. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    19. Jenn, Alan & Lee, Jae Hyun & Hardman, Scott & Tal, Gil, 2019. "An Examination of the Impact That Electric Vehicle Incentives Have on Consumer Purchase Decisions Over Time," Institute of Transportation Studies, Working Paper Series qt0x28831g, Institute of Transportation Studies, UC Davis.
    20. Kurani, Kenneth S & Caperello, Nicolette & TyreeHageman, Jennifer, 2018. "Are We Hardwiring Gender Differences into the Plug-in Electric Vehicle Market?," Institute of Transportation Studies, Working Paper Series qt0nb2m911, Institute of Transportation Studies, UC Davis.
    21. Turrentine, Thomas & Tal, Gil & Rapson, David, 2018. "The Dynamics of Plug-in Electric Vehicles in the Secondary Market and Their Implications for Vehicle Demand, Durability, and Emissions," Institute of Transportation Studies, Working Paper Series qt8wj5b0hn, Institute of Transportation Studies, UC Davis.
    22. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    23. Salon, Deborah, 2015. "Heterogeneity in the relationship between the built environment and driving: Focus on neighborhood type and travel purpose," Research in Transportation Economics, Elsevier, vol. 52(C), pages 34-45.
    24. Rode, Johannes & Weber, Alexander, 2016. "Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 38-48.
    25. Rodrigues, João L. & Bolognesi, Hugo M. & Melo, Joel D. & Heymann, Fabian & Soares, F.J., 2019. "Spatiotemporal model for estimating electric vehicles adopters," Energy, Elsevier, vol. 183(C), pages 788-802.
    26. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    27. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    28. Patrick Jochem & Jonatan J. Gómez Vilchez & Axel Ensslen & Johannes Schäuble & Wolf Fichtner, 2018. "Methods for forecasting the market penetration of electric drivetrains in the passenger car market," Transport Reviews, Taylor & Francis Journals, vol. 38(3), pages 322-348, May.
    29. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    30. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    31. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    32. Hardman, Scott, 2019. "Understanding the Impact of Reoccurring and Non-Financial Incentives on Plug-in Electric Vehicle Adoption – A Review," Institute of Transportation Studies, Working Paper Series qt7v13w987, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenran Jia & Can Ding & Wenhui Chen, 2023. "Research on the Diffusion Model of Electric Vehicle Quantity Considering Individual Choice," Energies, MDPI, vol. 16(14), pages 1-15, July.
    2. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    3. Yahong Jiang & Qunqi Wu & Min Li & Yulei Gu & Jun Yang, 2023. "What Is Affecting the Popularity of New Energy Vehicles? A Systematic Review Based on the Public Perspective," Sustainability, MDPI, vol. 15(18), pages 1-29, September.
    4. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    5. Hardman, Scott PhD & Chakraborty, Amrita PhD & Hoogland, Kelly & Sugihara, Claire, 2022. "Potential Challenges and Research Needs in reaching 100% Zero Emission Vehicle Sales- A Focus on Plug-in Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt8dt5b2q6, Institute of Transportation Studies, UC Davis.
    6. Xiu Cheng & Ruyin Long & Fan Wu, 2022. "How Symbols and Social Interaction Influence the Experienced Utility of Sustainable Lifestyle Guiding Policies: Evidence from Eastern China," IJERPH, MDPI, vol. 19(7), pages 1-22, April.
    7. Li, Guodong & Walls, W.D. & Zheng, Xiaoli, 2023. "Differential license plate pricing and electric vehicle adoption in Shanghai, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    8. Sikder, Sujit Kumar & Nagarajan, Magesh & Mustafee, Navonil, 2023. "Augmenting EV charging infrastructure towards transformative sustainable cities: An equity-based approach," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    9. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austmann, Leonhard M., 2021. "Drivers of the electric vehicle market: A systematic literature review of empirical studies," Finance Research Letters, Elsevier, vol. 41(C).
    2. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    3. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    4. Sommer, Stephan & Vance, Colin, 2021. "Do more chargers mean more electric cars?," Ruhr Economic Papers 893, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    5. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    6. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    8. Pronti, A. & Zoboli, R., 2024. "Something new under the sun. A spatial econometric analysis of the adoption of photovoltaic systems in Italy," Energy Economics, Elsevier, vol. 134(C).
    9. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    10. Collier, Samuel H.C. & House, Jo I. & Connor, Peter M. & Harris, Richard, 2023. "Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M. & Truckell, Ian & Hart, Phil, 2021. "Energy transition at local level: Analyzing the role of peer effects and socio-economic factors on UK solar photovoltaic deployment," Energy Policy, Elsevier, vol. 148(PB).
    12. Germeshausen, Robert, 2016. "Effects of Attribute-Based Regulation on Technology Adoption - The Case of Feed-In Tariffs for Solar Photovoltaic," VfS Annual Conference 2016 (Augsburg): Demographic Change 145712, Verein für Socialpolitik / German Economic Association.
    13. Dimatulac, Terence & Maoh, Hanna, 2017. "The spatial distribution of hybrid electric vehicles in a sprawled mid-size Canadian city: Evidence from Windsor, Canada," Journal of Transport Geography, Elsevier, vol. 60(C), pages 59-67.
    14. Haidar, Bassem & Aguilar Rojas, Maria Teresa, 2022. "The relationship between public charging infrastructure deployment and other socio-economic factors and electric vehicle adoption in France," Research in Transportation Economics, Elsevier, vol. 95(C).
    15. Trotta, Gianluca & Sommer, Stephan, 2024. "The effect of changing registration taxes on electric vehicle adoption in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    16. Mekky, Maher F. & Collins, Alan R., 2024. "The Impact of state policies on electric vehicle adoption -A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    18. Münzel, Christiane & Plötz, Patrick & Sprei, Frances & Gnann, Till, 2019. "How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis," Energy Economics, Elsevier, vol. 84(C).
    19. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    20. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:156:y:2022:i:c:p:133-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.