IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6892-d661157.html
   My bibliography  Save this article

Monitoring of Solar Still Desalination System Using the Internet of Things Technique

Author

Listed:
  • Mohamed Benghanem

    (Physics Department, Faculty of Science, Islamic University, P.O. Box 170, Madinah 42351, Saudi Arabia)

  • Adel Mellit

    (Renewable Energy Laboratory, Faculty of Sciences and Technology, Jijel University, Ouled-Aissa P.O. Box 98, Jijel 18000, Algeria
    The Abdus Salam International Centre of Theoretical Physics (ICTP), Strada Costiera, 11, 34151 Trieste, Italy)

  • Mohammed Emad

    (Chemistry Department, Faculty of Science, Islamic University, P.O. Box 170, Madinah 42351, Saudi Arabia)

  • Abdulaziz Aljohani

    (Physics Department, Faculty of Science, Islamic University, P.O. Box 170, Madinah 42351, Saudi Arabia)

Abstract

In this work, a smart solar still prototype for water desalination is designed. It consists of a basic solar still, a solar preheater and a remote monitoring system based on the Internet of Things (IoT) technique. The monitoring system is developed and integrated into the hybrid solar still in order to control its evolution online, as well the quality of the freshwater provided by checking measured parameters such as pH. Thanks to the IoT technique, parameters collected by the monitoring system (e.g., air temperatures, relative humidity, etc.) are uploaded to the cloud for online remote monitoring. The users are notified by an SMS about the status of the system (e.g., water level in the basin, water in the tank, etc.), using an GSM module. The whole system, including the preheater, water pump, valve, sensors and an electronic board, is powered by a photovoltaic module of 75 Wp. The results showed that by adding a solar preheater system, the evaporation process is accelerated and, consequently, the daily yield is improved and reaches the value of 12.165 L/m 2 /day. The saline concentration of the tested ground water is 3.9 g/Kg (0.39%), and, after desalination, the salinity is 0.1 g/Kg (0.01%).

Suggested Citation

  • Mohamed Benghanem & Adel Mellit & Mohammed Emad & Abdulaziz Aljohani, 2021. "Monitoring of Solar Still Desalination System Using the Internet of Things Technique," Energies, MDPI, vol. 14(21), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6892-:d:661157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirmanto & I Made Adi Sayoga & Agung Tri Wijayanta & Agus Pulung Sasmito & Muhammad Aziz, 2021. "Enhancement of Continuous-Feed Low-Cost Solar Distiller: Effects of Various Fin Designs," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    3. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Wojciech Kalawa, 2021. "Experimental Validation of the Thermal Processes Modeling in a Solar Still," Energies, MDPI, vol. 14(8), pages 1-22, April.
    4. K. R. Ranjan & S. C. Kaushik, 2016. "Economic feasibility evaluation of solar distillation systems based on the equivalent cost of environmental degradation and high-grade energy savings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(1), pages 8-15.
    5. Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
    6. M. Mohamed Thalib & Athikesavan Muthu Manokar & Fadl A. Essa & N. Vasimalai & Ravishankar Sathyamurthy & Fausto Pedro Garcia Marquez, 2020. "Comparative Study of Tubular Solar Stills with Phase Change Material and Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 13(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amor Hamied & Adel Mellit & Mohamed Benghanem & Sahbi Boubaker, 2023. "IoT-Based Low-Cost Photovoltaic Monitoring for a Greenhouse Farm in an Arid Region," Energies, MDPI, vol. 16(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    2. Kim, Jungbin & Park, Kiho & Yang, Dae Ryook & Hong, Seungkwan, 2019. "A comprehensive review of energy consumption of seawater reverse osmosis desalination plants," Applied Energy, Elsevier, vol. 254(C).
    3. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    4. Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
    5. Ali O. Al-Sulttani & Amimul Ahsan & Basim A. R. Al-Bakri & Mahir Mahmod Hason & Nik Norsyahariati Nik Daud & S. Idrus & Omer A. Alawi & Elżbieta Macioszek & Zaher Mundher Yaseen, 2022. "Double-Slope Solar Still Productivity Based on the Number of Rubber Scraper Motions," Energies, MDPI, vol. 15(21), pages 1-34, October.
    6. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    7. Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
    8. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    9. Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
    10. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Byrne, Paul & Fournaison, Laurence & Delahaye, Anthony & Ait Oumeziane, Yacine & Serres, Laurent & Loulergue, Patrick & Szymczyk, Anthony & Mugnier, Daniel & Malaval, Jean-Luc & Bourdais, Romain & Gue, 2015. "A review on the coupling of cooling, desalination and solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 703-717.
    12. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    13. Lixi Zhang & Kai Feng & Zhendong Xie & Kangbo Wang, 2022. "Study on Heat Transfer Process and Fresh Water Output Performance of Phase Change Heat Storage Dehumidifier," Energies, MDPI, vol. 15(4), pages 1-21, February.
    14. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    15. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    16. Ewelina Radomska & Łukasz Mika & Karol Sztekler & Wojciech Kalawa & Łukasz Lis & Kinga Pielichowska & Magdalena Szumera & Paweł Rutkowski, 2023. "Experimental and Theoretical Investigation of Single-Slope Passive Solar Still with Phase-Change Materials," Energies, MDPI, vol. 16(3), pages 1-29, January.
    17. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).
    18. Garzozi, A. & Greenblatt, D., 2022. "Exploiting the Coandă effect for wind-driven reciprocating RO desalination," Energy, Elsevier, vol. 238(PC).
    19. Cabrera, Pedro & Carta, José A. & Matos, Carlos & Rosales-Asensio, Enrique & Lund, Henrik, 2024. "Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria," Applied Energy, Elsevier, vol. 358(C).
    20. Godart, Peter, 2021. "Design and simulation of a heat-driven direct reverse osmosis device for seawater desalination powered by solar thermal energy," Applied Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6892-:d:661157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.