IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311440.html
   My bibliography  Save this article

A self-sustainable solar desalination system using direct spray technology

Author

Listed:
  • Chen, Qian
  • Alrowais, Raid
  • Burhan, Muhammad
  • Ybyraiymkul, Doskhan
  • Shahzad, Muhammad Wakil
  • Li, Yong
  • Ng, Kim Choon

Abstract

Solar desalination offers a sustainable solution to growing global water demand due to the geographical coincidence between high solar availability and severe water scarcity. This paper presents a self-sustainable solar desalination system combining a spray-assisted low-temperature desalination system, solar thermal collectors, and heat storage tanks. A mathematical model is firstly developed and validated with laboratory pilot for the proposed large-scale solar-powered desalination system. Afterward, the long-term productivity and energy efficiency of the system is evaluated under the climatic conditions of Makkah, Saudi Arabia. The proposed solar desalination system is able to provide an uninterrupted water supply of 20 kg/day for per square meter solar collector area, and the value can be further increased by optimizing the interactions of the three subsystems, i.e. efficiency of the solar collectors, temperature and heat losses in the storage tank, and energy efficiency of the desalination system. With a collector area of 360 m2, the annual productivity is maximized when the feed flowrate is 1.7 kg/s and the diameter of the heat storage tank is 1.9 m. The desalination cost is estimated to be $1.29/m3, which is much lower than other solar thermal desalination systems.

Suggested Citation

  • Chen, Qian & Alrowais, Raid & Burhan, Muhammad & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2020. "A self-sustainable solar desalination system using direct spray technology," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311440
    DOI: 10.1016/j.energy.2020.118037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wellmann, Johannes & Meyer-Kahlen, Bernhild & Morosuk, Tatiana, 2018. "Exergoeconomic evaluation of a CSP plant in combination with a desalination unit," Renewable Energy, Elsevier, vol. 128(PB), pages 586-602.
    2. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    3. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    4. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.
    5. Jahangiri Mamouri, S. & Gholami Derami, H. & Ghiasi, M. & Shafii, M.B. & Shiee, Z., 2014. "Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still," Energy, Elsevier, vol. 75(C), pages 501-507.
    6. Ghaffour, Noreddine & Lattemann, Sabine & Missimer, Thomas & Ng, Kim Choon & Sinha, Shahnawaz & Amy, Gary, 2014. "Renewable energy-driven innovative energy-efficient desalination technologies," Applied Energy, Elsevier, vol. 136(C), pages 1155-1165.
    7. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahid Riaz & Kah Hoe Tan & Muhammad Farooq & Muhammad Imran & Poh Seng Lee, 2020. "Energy Analysis of a Novel Ejector-Compressor Cooling Cycle Driven by Electricity and Heat (Waste Heat or Solar Energy)," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Ghenai, Chaouki & Kabakebji, Dania & Douba, Ikram & Yassin, Ameera, 2021. "Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water," Energy, Elsevier, vol. 215(PB).
    4. Fahid Riaz & Muhammad Abdul Qyyum & Awais Bokhari & Jiří Jaromír Klemeš & Muhammad Usman & Muhammad Asim & Muhammad Rizwan Awan & Muhammad Imran & Moonyong Lee, 2021. "Design and Energy Analysis of a Solar Desiccant Evaporative Cooling System with Built-In Daily Energy Storage," Energies, MDPI, vol. 14(9), pages 1-17, April.
    5. Hussein M. Maghrabie & Abdul Ghani Olabi & Ahmed Rezk & Ali Radwan & Abdul Hai Alami & Mohammad Ali Abdelkareem, 2023. "Energy Storage for Water Desalination Systems Based on Renewable Energy Resources," Energies, MDPI, vol. 16(7), pages 1-34, March.
    6. Chen, Yingxu & Ji, Xu & Yang, Bianfeng & Jia, Yicong & Wang, Mengqi, 2024. "Performance enhancement of compound parabolic concentrating vaporized desalination system by spraying and steam heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    7. Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2023. "Optimization and analysis of combined heat and water production system based on a coal-fired power plant," Energy, Elsevier, vol. 262(PB).
    8. Chen, Yingxu & Ji, Xu & Lv, Guanchao & Jia, Yicong & Yang, Bianfeng & Han, Jingyang, 2023. "Study on compound parabolic concentrating vaporized desalination system with preheating and heat recovery," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Q. & Oh, S.J. & Li, Y. & Ja, M. Kum, 2020. "Thermodynamic optimization of a low-temperature desalination system driven by sensible heat sources," Energy, Elsevier, vol. 192(C).
    2. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    3. Ahmed E. Abu El-Maaty & Mohamed M. Awad & Gamal I. Sultan & Ahmed M. Hamed, 2023. "Innovative Approaches to Solar Desalination: A Comprehensive Review of Recent Research," Energies, MDPI, vol. 16(9), pages 1-31, May.
    4. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    5. Wang, Qiushi & Zhu, Ziye & Wu, Gang & Zhang, Xiang & Zheng, Hongfei, 2018. "Energy analysis and experimental verification of a solar freshwater self-produced ecological film floating on the sea," Applied Energy, Elsevier, vol. 224(C), pages 510-526.
    6. Calise, Francesco & Cappiello, Francesco Liberato & Vanoli, Raffaele & Vicidomini, Maria, 2019. "Economic assessment of renewable energy systems integrating photovoltaic panels, seawater desalination and water storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2018. "Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system," Energy, Elsevier, vol. 151(C), pages 387-401.
    8. Chen, Qian & Burhan, Muhammad & Akhtar, Faheem Hassan & Ybyraiymkul, Doskhan & Shahzad, Muhammad Wakil & Li, Yong & Ng, Kim Choon, 2021. "A decentralized water/electricity cogeneration system integrating concentrated photovoltaic/thermal collectors and vacuum multi-effect membrane distillation," Energy, Elsevier, vol. 230(C).
    9. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2016. "A state of the art of hybrid adsorption desalination–cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 692-703.
    10. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    11. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    12. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    13. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    14. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    15. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.
    16. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    17. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).
    18. Seo, Hyunduk & Aliyu, Aliyu M. & Kim, Kyung Chun, 2018. "Enhancement of momentum transfer of bubble swarms using an ejector with water injection," Energy, Elsevier, vol. 162(C), pages 892-909.
    19. Qiaonan Yang & Can Hu & Jie Li & Xiaokang Yi & Yichuan He & Jie Zhang & Zhilin Sun, 2021. "A Separation and Desalination Process for Farmland Saline-Alkaline Water," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    20. Andrés-Mañas, J.A. & Roca, L. & Ruiz-Aguirre, A. & Acién, F.G. & Gil, J.D. & Zaragoza, G., 2020. "Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.