IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6826-d659519.html
   My bibliography  Save this article

Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation

Author

Listed:
  • Ondrej Lipcak

    (Department of Electric Drives and Traction, Czech Technical University in Prague, 160 00 Prague, Czech Republic)

  • Filip Baum

    (Department of Electric Drives and Traction, Czech Technical University in Prague, 160 00 Prague, Czech Republic)

  • Jan Bauer

    (Department of Electric Drives and Traction, Czech Technical University in Prague, 160 00 Prague, Czech Republic)

Abstract

Mathematical models of induction motor (IM) used in direct field-oriented control (DFOC) strategies are characterized by parametrization resulting from the IM equivalent circuit and model-type selection. The parameter inaccuracy causes DFOC detuning, which deteriorates the drive performance. Therefore, many methods for parameter adaptation were developed in the literature. One class of algorithms, popular due to their simplicity, includes estimators based on the model reference adaptive system (MRAS). Their main disadvantage is the dependence on other machines’ parameters. However, although typically not considered in the respective literature, there are other aspects that impair the performance of the MRAS estimators. These include, but are not limited to, the nonlinear phenomenon of iron losses, the effect of necessary discretization of the algorithms and selection of the sampling time, and the influence of the supply inverter nonlinear behavior. Therefore, this paper aims to study the effect of the above-mentioned negative aspects on the performance of selected MRAS estimators: active and reactive power MRAS for the stator and rotor resistance estimation. Furthermore, improved reduced-order models and MRAS estimators that consider the iron loss phenomenon are also presented to examine the iron loss influence. Another merit of this paper is that it shows clearly and in one place how DFOC, with the included effect of iron losses and inverter nonlinearities, can be modeled using simulation tools. The modeling of the IM and DFOC takes place in MATLAB/Simulink environment.

Suggested Citation

  • Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6826-:d:659519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Tang & Yongheng Yang & Frede Blaabjerg & Jie Chen & Lijun Diao & Zhigang Liu, 2018. "Parameter Identification of Inverter-Fed Induction Motors: A Review," Energies, MDPI, vol. 11(9), pages 1-21, August.
    2. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    3. Tuan Pham Van & Dung Vo Tien & Zbigniew Leonowicz & Michal Jasinski & Tomasz Sikorski & Prasun Chakrabarti, 2020. "Online Rotor and Stator Resistance Estimation Based on Artificial Neural Network Applied in Sensorless Induction Motor Drive," Energies, MDPI, vol. 13(18), pages 1-16, September.
    4. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    2. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    3. Carmenza Moreno Roa & Adolfo Andrés Jaramillo Matta & Juan David Bastidas Rodríguez, 2020. "Stochastic Search Technique with Variable Deterministic Constraints for the Estimation of Induction Motor Parameters," Energies, MDPI, vol. 13(1), pages 1-21, January.
    4. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    5. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    6. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    8. Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Simone Mari & Maria Anna Segreto, 2019. "The Measurement of Additional Losses in Induction Motors: Discussion about the Actually Achievable Uncertainty," Energies, MDPI, vol. 13(1), pages 1-13, December.
    9. Elzbieta Szychta & Leszek Szychta, 2021. "Collective Losses of Low Power Cage Induction Motors—A New Approach," Energies, MDPI, vol. 14(6), pages 1-19, March.
    10. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.
    11. Maria Dems & Krzysztof Komeza & Jacek Szulakowski & Witold Kubiak, 2021. "Dynamic Simulation of High-Speed Induction Motor," Energies, MDPI, vol. 14(9), pages 1-14, May.
    12. S. Usha & C. Subramani & Sanjeevikumar Padmanaban, 2019. "Neural Network-Based Model Reference Adaptive System for Torque Ripple Reduction in Sensorless Poly Phase Induction Motor Drive," Energies, MDPI, vol. 12(5), pages 1-25, March.
    13. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    14. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    15. Mladen Vučković & Vladimir Popović & Djura Oros & Veran Vasić & Darko Marčetić, 2021. "Low Voltage Induction Motor Traction Drive Self-Commissioning Technique with the Advanced Measured Signal Processing Procedure," Energies, MDPI, vol. 14(6), pages 1-18, March.
    16. Tadeusz Białoń & Marian Pasko & Roman Niestrój, 2020. "Developing Induction Motor State Observers with Increased Robustness," Energies, MDPI, vol. 13(20), pages 1-24, October.
    17. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    18. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    19. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    20. Martin Ćalasan & Mihailo Micev & Ziad M. Ali & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2020. "Parameter Estimation of Induction Machine Single-Cage and Double-Cage Models Using a Hybrid Simulated Annealing–Evaporation Rate Water Cycle Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6826-:d:659519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.