IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p920-d212489.html
   My bibliography  Save this article

Neural Network-Based Model Reference Adaptive System for Torque Ripple Reduction in Sensorless Poly Phase Induction Motor Drive

Author

Listed:
  • S. Usha

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India)

  • C. Subramani

    (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India)

  • Sanjeevikumar Padmanaban

    (Center for Bioenergy and Green Engineering, Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

Abstract

This paper proposes the modified, extended Kalman filter, neural network-based model reference adaptive system and the modified observer technique to estimate the speed of a five-phase induction motor for sensorless drive. The proposed method is generated to achieve reduced speed deviation and reduced torque ripple efficiently. In inclusion, the result of speed performance and torque ripple under parameter variations were analysed and compared with the conventional direct synthesis method. The speed estimation of a five-phase motor in the four methods is analysed using MATLAB Simulink platform, and the optimum method is recognized using time domain analysis. It is observed that speed error is minimized by 60% and torque ripple is reduced by 75% in the proposed method. The hardware setup is carried out for the optimized method identified.

Suggested Citation

  • S. Usha & C. Subramani & Sanjeevikumar Padmanaban, 2019. "Neural Network-Based Model Reference Adaptive System for Torque Ripple Reduction in Sensorless Poly Phase Induction Motor Drive," Energies, MDPI, vol. 12(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:920-:d:212489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Tang & Yongheng Yang & Frede Blaabjerg & Jie Chen & Lijun Diao & Zhigang Liu, 2018. "Parameter Identification of Inverter-Fed Induction Motors: A Review," Energies, MDPI, vol. 11(9), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Usha Sengamalai & T. M. Thamizh Thentral & Palanisamy Ramasamy & Mohit Bajaj & Syed Sabir Hussain Bukhari & Ehab E. Elattar & Ahmed Althobaiti & Salah Kamel, 2022. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application," Mathematics, MDPI, vol. 10(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmenza Moreno Roa & Adolfo Andrés Jaramillo Matta & Juan David Bastidas Rodríguez, 2020. "Stochastic Search Technique with Variable Deterministic Constraints for the Estimation of Induction Motor Parameters," Energies, MDPI, vol. 13(1), pages 1-21, January.
    2. Mladen Vučković & Vladimir Popović & Djura Oros & Veran Vasić & Darko Marčetić, 2021. "Low Voltage Induction Motor Traction Drive Self-Commissioning Technique with the Advanced Measured Signal Processing Procedure," Energies, MDPI, vol. 14(6), pages 1-18, March.
    3. Martin Ćalasan & Mihailo Micev & Ziad M. Ali & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2020. "Parameter Estimation of Induction Machine Single-Cage and Double-Cage Models Using a Hybrid Simulated Annealing–Evaporation Rate Water Cycle Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
    4. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    5. Mohan Krishna Srinivasan & Febin Daya John Lionel & Umashankar Subramaniam & Frede Blaabjerg & Rajvikram Madurai Elavarasan & G. M. Shafiullah & Irfan Khan & Sanjeevikumar Padmanaban, 2020. "Real-Time Processor-in-Loop Investigation of a Modified Non-Linear State Observer Using Sliding Modes for Speed Sensorless Induction Motor Drive in Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:920-:d:212489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.