IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5487-d431784.html
   My bibliography  Save this article

Developing Induction Motor State Observers with Increased Robustness

Author

Listed:
  • Tadeusz Białoń

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Marian Pasko

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Roman Niestrój

    (Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

This paper presents the results of recently conducted research on Luenberger observers with non-proportional feedbacks. The observers are applied for the reconstruction of magnetic fluxes of an induction motor. Structures of the observers known from the control theory are presented. These are a proportional observer, a proportional-integral observer, a modified integral observer, and an observer with additional integrators. The practical application of some of these observers requires modifications to their structures. In the paper, the simulation results for all mentioned types of observers are presented. The simulations are performed with a Scilab-Xcos model which is attached to this paper. The problem of gains selection of the observers is discussed. Gains are selected with the described optimization method based on a genetic algorithm. A Scilab file launching the genetic algorithm also is attached to this paper.

Suggested Citation

  • Tadeusz Białoń & Marian Pasko & Roman Niestrój, 2020. "Developing Induction Motor State Observers with Increased Robustness," Energies, MDPI, vol. 13(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5487-:d:431784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amrane, Ahmed & Larabi, Abdelkader & Aitouche, Abdel, 2020. "Unknown input observer design for fault sensor estimation applied to induction machine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 415-428.
    2. Fengxiang Wang & Zhenbin Zhang & Xuezhu Mei & José Rodríguez & Ralph Kennel, 2018. "Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control," Energies, MDPI, vol. 11(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.
    2. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Gianluca Brando & Adolfo Dannier & Ivan Spina, 2021. "Performance Analysis of a Full Order Sensorless Control Adaptive Observer for Doubly-Fed Induction Generator in Grid Connected Operation," Energies, MDPI, vol. 14(5), pages 1-13, February.
    4. Usha Sengamalai & T. M. Thamizh Thentral & Palanisamy Ramasamy & Mohit Bajaj & Syed Sabir Hussain Bukhari & Ehab E. Elattar & Ahmed Althobaiti & Salah Kamel, 2022. "Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application," Mathematics, MDPI, vol. 10(8), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.
    2. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    3. Veerasamy, Gomathi & Kannan, Ramkumar & Siddharthan, RakeshKumar & Muralidharan, Guruprasath & Sivanandam, Venkatesh & Amirtharajan, Rengarajan, 2022. "Integration of genetic algorithm tuned adaptive fading memory Kalman filter with model predictive controller for active fault-tolerant control of cement kiln under sensor faults with inaccurate noise ," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 256-277.
    4. Kodkin Vladimir & Anikin Alexander, 2021. "On the Physical Nature of Frequency Control Problems of Induction Motor Drives," Energies, MDPI, vol. 14(14), pages 1-15, July.
    5. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    6. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.
    7. Zhanqing Zhou & Xin Gu & Zhiqiang Wang & Guozheng Zhang & Qiang Geng, 2019. "An Improved Torque Control Strategy of PMSM Drive Considering On-Line MTPA Operation," Energies, MDPI, vol. 12(15), pages 1-17, July.
    8. Cheng-Kai Lin & Jen-te Yu & Hao-Qun Huang & Jyun-Ting Wang & Hsing-Cheng Yu & Yen-Shin Lai, 2018. "A Dual-Voltage-Vector Model-Free Predictive Current Controller for Synchronous Reluctance Motor Drive Systems," Energies, MDPI, vol. 11(7), pages 1-29, July.
    9. Yuzhe Zhang & Xiaodong Liu & Haitao Li & Zhenbin Zhang, 2023. "A Model Independent Predictive Control of PMSG Wind Turbine Systems with a New Mechanism to Update Variables," Energies, MDPI, vol. 16(9), pages 1-15, April.
    10. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    11. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    12. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    13. Yanis Hamoudi & Hocine Amimeur & Djamal Aouzellag & Maher G. M. Abdolrasol & Taha Selim Ustun, 2023. "Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System," Energies, MDPI, vol. 16(12), pages 1-19, June.
    14. Mostafa Ahmed & Ibrahim Harbi & Ralph Kennel & José Rodríguez & Mohamed Abdelrahem, 2022. "Evaluation of the Main Control Strategies for Grid-Connected PV Systems," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    15. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    16. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    17. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    18. Andrzej Chudzikiewicz & Igor Maciejewski & Tomasz Krzyżyński & Andrzej Krzyszkowski & Anna Stelmach, 2022. "Electric Drive Solution for Low-Floor City Transport Trams," Energies, MDPI, vol. 15(13), pages 1-18, June.
    19. Pavel Karlovsky & Jiri Lettl, 2018. "Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis," Energies, MDPI, vol. 11(7), pages 1-14, July.
    20. Farya Golesorkhie & Fuwen Yang & Ljubo Vlacic & Geoff Tansley, 2020. "Field Oriented Control-Based Reduction of the Vibration and Power Consumption of a Blood Pump," Energies, MDPI, vol. 13(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5487-:d:431784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.