IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p1024-d375121.html
   My bibliography  Save this article

Parameter Estimation of Induction Machine Single-Cage and Double-Cage Models Using a Hybrid Simulated Annealing–Evaporation Rate Water Cycle Algorithm

Author

Listed:
  • Martin Ćalasan

    (Faculty of Electrical Engineering, University of Montenegro, Dzordza Vasingtona, 81000 Podgorica, Montenegro)

  • Mihailo Micev

    (Faculty of Electrical Engineering, University of Montenegro, Dzordza Vasingtona, 81000 Podgorica, Montenegro)

  • Ziad M. Ali

    (Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia
    Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Sahary City 81542, Egypt)

  • Ahmed F. Zobaa

    (Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, UK)

  • Shady H. E. Abdel Aleem

    (Mathematical, Physical and Engineering Sciences Department, 15th of May Higher Institute of Engineering, Cairo 11731, Egypt)

Abstract

This paper presents the usage of the hybrid simulated annealing—evaporation rate water cycle algorithm (SA-ERWCA) for induction machine equivalent circuit parameter estimation. The proposed algorithm is applied to nameplate data, measured data found in the literature, and data measured experimentally on a laboratory three-phase induction machine operating as an induction motor and as an induction generator. Furthermore, the proposed method is applied to both single-cage and double-cage equivalent circuit models. The accuracy and applicability of the proposed SA-ERWCA are intensively investigated, comparing the machine output characteristics determined by using SA-ERWCA parameters with corresponding characteristics obtained by using parameters determined using known methods from the literature. Also, the comparison of the SA-ERWCA with classic ERWCA and other algorithms used in the literature for induction machine parameter estimation is presented. The obtained results show that the proposed algorithm is a very effective and accurate method for induction machine parameter estimation. Furthermore, it is shown that the SA-ERWCA has the best convergence characteristics compared to other algorithms for induction machine parameter estimation in the literature.

Suggested Citation

  • Martin Ćalasan & Mihailo Micev & Ziad M. Ali & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2020. "Parameter Estimation of Induction Machine Single-Cage and Double-Cage Models Using a Hybrid Simulated Annealing–Evaporation Rate Water Cycle Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1024-:d:375121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/1024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/1024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Tang & Yongheng Yang & Frede Blaabjerg & Jie Chen & Lijun Diao & Zhigang Liu, 2018. "Parameter Identification of Inverter-Fed Induction Motors: A Review," Energies, MDPI, vol. 11(9), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Altaf & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Ahmad H. Milyani, 2022. "Adaptive Evolutionary Computation for Nonlinear Hammerstein Control Autoregressive Systems with Key Term Separation Principle," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    2. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmenza Moreno Roa & Adolfo Andrés Jaramillo Matta & Juan David Bastidas Rodríguez, 2020. "Stochastic Search Technique with Variable Deterministic Constraints for the Estimation of Induction Motor Parameters," Energies, MDPI, vol. 13(1), pages 1-21, January.
    2. S. Usha & C. Subramani & Sanjeevikumar Padmanaban, 2019. "Neural Network-Based Model Reference Adaptive System for Torque Ripple Reduction in Sensorless Poly Phase Induction Motor Drive," Energies, MDPI, vol. 12(5), pages 1-25, March.
    3. Mladen Vučković & Vladimir Popović & Djura Oros & Veran Vasić & Darko Marčetić, 2021. "Low Voltage Induction Motor Traction Drive Self-Commissioning Technique with the Advanced Measured Signal Processing Procedure," Energies, MDPI, vol. 14(6), pages 1-18, March.
    4. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    5. Mohan Krishna Srinivasan & Febin Daya John Lionel & Umashankar Subramaniam & Frede Blaabjerg & Rajvikram Madurai Elavarasan & G. M. Shafiullah & Irfan Khan & Sanjeevikumar Padmanaban, 2020. "Real-Time Processor-in-Loop Investigation of a Modified Non-Linear State Observer Using Sliding Modes for Speed Sensorless Induction Motor Drive in Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:1024-:d:375121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.