IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2713-d551080.html
   My bibliography  Save this article

Dynamic Simulation of High-Speed Induction Motor

Author

Listed:
  • Maria Dems

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Krzysztof Komeza

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Jacek Szulakowski

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Witold Kubiak

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

In the drives of high-speed devices, such as a blood centrifuge, dynamic states also play an important role in terms of the time and quality of the tests performed. The article presents the application of modified equations resulting from the mathematical model of an induction motor to model dynamic phenomena during motor start-up, both with mains supply and with frequency start-up. The applied solution considers the phenomenon of current displacement in the rotor bar and the phenomenon of saturation. The comparison of the obtained results with the experiment shows that the method is sufficiently accurate. The obtained results can also be extended to higher power machines and to modeling other dynamic states.

Suggested Citation

  • Maria Dems & Krzysztof Komeza & Jacek Szulakowski & Witold Kubiak, 2021. "Dynamic Simulation of High-Speed Induction Motor," Energies, MDPI, vol. 14(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2713-:d:551080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang Wang & Ruituo Huai & Zhihao Yu & Xiaoyang Zhang & Fengjuan Li & Luwei Zhang, 2019. "Comparison Study of Induction Motor Models Considering Iron Loss for Electric Drives," Energies, MDPI, vol. 12(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Stability Analysis of Open-Loop V/Hz Controlled Asynchronous Machines and Two Novel Mitigation Strategies for Oscillations Suppression," Energies, MDPI, vol. 15(4), pages 1-15, February.
    2. Aleksey Paramonov & Safarbek Oshurbekov & Vadim Kazakbaev & Vladimir Prakht & Vladimir Dmitrievskii, 2022. "Study of the Effect of Throttling on the Success of Starting a Line-Start Permanent Magnet Motor Driving a Centrifugal Fan," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Simone Mari & Maria Anna Segreto, 2019. "The Measurement of Additional Losses in Induction Motors: Discussion about the Actually Achievable Uncertainty," Energies, MDPI, vol. 13(1), pages 1-13, December.
    2. Elzbieta Szychta & Leszek Szychta, 2021. "Collective Losses of Low Power Cage Induction Motors—A New Approach," Energies, MDPI, vol. 14(6), pages 1-19, March.
    3. Chaymae Fahassa & Yassine Zahraoui & Mohammed Akherraz & Mohammed Kharrich & Ehab E. Elattar & Salah Kamel, 2022. "Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    4. Ondrej Lipcak & Filip Baum & Jan Bauer, 2021. "Influence of Selected Non-Ideal Aspects on Active and Reactive Power MRAS for Stator and Rotor Resistance Estimation," Energies, MDPI, vol. 14(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2713-:d:551080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.