IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2878-d794010.html
   My bibliography  Save this article

Realistic Simulation of Sensor/Actuator Faults for a Dependability Evaluation of Demand-Controlled Ventilation and Heating Systems

Author

Listed:
  • Bahareh Kiamanesh

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

  • Ali Behravan

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

  • Roman Obermaisser

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

Abstract

In the development of fault-tolerant systems, simulation is a common technique used to obtain insights into performance and dependability because it saves time and avoids the risks of testing the behavior of real-world systems in the presence of faults. Fault injection in a simulation offers a high controllability and observability, and thus is ideal for an early dependability analysis and fault-tolerance evaluation. Heating, ventilation, and air conditioning (HVAC) systems in critical infrastructures, such as airports and hospitals, are safety-relevant systems, which not only determine energy consumption, system efficiency, and occupancy comfort but also play an essential role in emergency scenarios (e.g., fires, biological hazards). Hence, fault injection serves as a practical and essential solution to assess dependability in different fault scenarios of HVAC systems. Hence, in this paper, we present a simulation-based fault injection framework with a combination of two techniques, simulator command and simulation code modification, which are applied to fault injector blocks as saboteurs and an automated fault injector algorithm to automatically activate fault cases with certain fault attributes. The proposed fault injection framework supports a comprehensive range of faults and various fault attributes, including fault persistence, fault type, fault location, fault duration, and fault interarrival time. This framework considers noise in a demand-controlled ventilation (DCV) and heating system as a type of HVAC system since it has been demonstrated that any fault injection scenario is accompanied by some impacts on energy consumption, occupancy comfort, and a fire risk. It also supports the reproducibility for a set of specific fault scenarios or random fault injection scenarios. The system model was implemented and simulated in Matlab/Simulink, and fault injector blocks were developed by Stateflow diagrams. An experimental evaluation serves as the assessment of the presented fault injection framework with a defined example of fault scenarios. The results of the evaluation show the correctness, system behavior, accuracy, and other parameters of the system, such as the heater energy consumption and heater duty cycle of the fault injection framework in the presence of different fault cases. In conclusion, the present paper provides a novel simulation-based fault injection framework, which combines simulator command techniques and simulation code modifications for a realistic and automatic fault injection with comprehensive coverage of various fault types and a consideration of noise and uncertainty, allowing for reproducibility of the results. The outputs achieved from the fault injection framework can be applied to fault-tolerant studies in other application domains.

Suggested Citation

  • Bahareh Kiamanesh & Ali Behravan & Roman Obermaisser, 2022. "Realistic Simulation of Sensor/Actuator Faults for a Dependability Evaluation of Demand-Controlled Ventilation and Heating Systems," Energies, MDPI, vol. 15(8), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2878-:d:794010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Behravan & Bahareh Kiamanesh & Roman Obermaisser, 2021. "Fault Diagnosis of DCV and Heating Systems Based on Causal Relation in Fuzzy Bayesian Belief Networks Using Relation Direction Probabilities," Energies, MDPI, vol. 14(20), pages 1-47, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Amanowicz & Katarzyna Ratajczak & Edyta Dudkiewicz, 2023. "Recent Advancements in Ventilation Systems Used to Decrease Energy Consumption in Buildings—Literature Review," Energies, MDPI, vol. 16(4), pages 1-39, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wenli & Liu, Fenghua & Fang, Weili & Love, Peter E.D., 2024. "Causal discovery and reasoning for geotechnical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2878-:d:794010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.