IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1801-d118036.html
   My bibliography  Save this article

Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies

Author

Listed:
  • Nermin Suljanović

    (Faculty of Electrical Engineering, University of Tuzla, Franjevačka 2, 75000 Tuzla, Bosnia and Herzegovina)

  • Aljo Mujčić

    (Faculty of Electrical Engineering, University of Tuzla, Franjevačka 2, 75000 Tuzla, Bosnia and Herzegovina)

  • Matej Zajc

    (Faculty of Electrical Engineering, University of Ljubljana, Trzaška 25, SI-1000 Ljubljana, Slovenia)

Abstract

This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.

Suggested Citation

  • Nermin Suljanović & Aljo Mujčić & Matej Zajc, 2017. "Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies," Energies, MDPI, vol. 10(11), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1801-:d:118036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingjing Wang & Junhua Wang & Jianwei Shao & Jiangui Li, 2017. "Image Recognition of Icing Thickness on Power Transmission Lines Based on a Least Squares Hough Transform," Energies, MDPI, vol. 10(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Kabardin & Sergey Dvoynishnikov & Maxim Gordienko & Sergey Kakaulin & Vadim Ledovsky & Grigoriy Gusev & Vladislav Zuev & Valery Okulov, 2021. "Optical Methods for Measuring Icing of Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-14, October.
    2. Yanpeng Hao & Jie Wei & Xiaolan Jiang & Lin Yang & Licheng Li & Junke Wang & Hao Li & Ruihai Li, 2018. "Icing Condition Assessment of In-Service Glass Insulators Based on Graphical Shed Spacing and Graphical Shed Overhang," Energies, MDPI, vol. 11(2), pages 1-12, February.
    3. Jeff Laninga & Ali Nasr Esfahani & Gevindu Ediriweera & Nathan Jacob & Behzad Kordi, 2023. "Monitoring Technologies for HVDC Transmission Lines," Energies, MDPI, vol. 16(13), pages 1-32, June.
    4. Francisca Alcayde-García & Esther Salmerón-Manzano & Miguel A. Montero & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2022. "Power Transmission Lines: Worldwide Research Trends," Energies, MDPI, vol. 15(16), pages 1-21, August.
    5. Ziquan Liu & Huifang Wang, 2018. "Automatic Detection of Transformer Components in Inspection Images Based on Improved Faster R-CNN," Energies, MDPI, vol. 11(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1801-:d:118036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.