IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6395-d650883.html
   My bibliography  Save this article

Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction

Author

Listed:
  • Lijian Shi

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
    Hydrodynamic Engineering Laboratory of Jiangsu Province, Yangzhou 225009, China)

  • Jun Zhu

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China)

  • Li Wang

    (Huai’an Institute of Hydraulic Survey and Design, Ltd., Huai’an 223001, China)

  • Shiji Chu

    (International Center for Small Hydro Power, Hangzhou 310002, China)

  • Fangping Tang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
    Hydrodynamic Engineering Laboratory of Jiangsu Province, Yangzhou 225009, China)

  • Yan Jin

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225000, China
    Hydrodynamic Engineering Laboratory of Jiangsu Province, Yangzhou 225009, China)

Abstract

Fluid-structure interaction (FSI) was used to determine the structural mechanical characteristics of full tubular and axial-flow pumps. The results showed that as the flow rate increases, the total deformation and equivalent stress are significantly reduced. The max total deformation (MTD) and the max equivalent stress (MES) of the full tubular pump impeller occur on the outer edge of the blade. There are two stress concentrations in the full tubular pump impeller, one of which is located in the outlet area of the rim, and the other is located in the outlet area of the hub. However, the MES of the axial-flow pump appears in the center of the blade hub. The performance difference between the full tubular pump and the axial-flow pump is mainly caused by the clearance backflow. The natural frequency of the full tubular pump is lower than that of the axial-flow pump on the basis of the modal results. The MES of the full tubular pump is mainly concentrated at the junction of the blade and the motor rotor, and the max thickness of the rim is 6mm, which can be more prone to cracks and seriously affect the safety and stability of the pump.

Suggested Citation

  • Lijian Shi & Jun Zhu & Li Wang & Shiji Chu & Fangping Tang & Yan Jin, 2021. "Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction," Energies, MDPI, vol. 14(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6395-:d:650883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Lijian & Zhang, Wenpeng & Jiao, Haifeng & Tang, Fangping & Wang, Li & Sun, Dandan & Shi, Wei, 2020. "Numerical simulation and experimental study on the comparison of the hydraulic characteristics of an axial-flow pump and a full tubular pump," Renewable Energy, Elsevier, vol. 153(C), pages 1455-1464.
    2. Lijian Shi & Jun Zhu & Fangping Tang & Chuan Wang, 2020. "Multi-Disciplinary Optimization Design of Axial-Flow Pump Impellers Based on the Approximation Model," Energies, MDPI, vol. 13(4), pages 1-19, February.
    3. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.
    4. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    2. Weixuan Jiao & Di Zhang & Chuan Wang & Li Cheng & Tao Wang, 2020. "Unsteady Numerical Calculation of Oblique Submerged Jet," Energies, MDPI, vol. 13(18), pages 1-13, September.
    3. Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
    4. Shi, Lijian & Yuan, Yao & Jiao, Haifeng & Tang, Fangping & Cheng, Li & Yang, Fan & Jin, Yan & Zhu, Jun, 2021. "Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump," Renewable Energy, Elsevier, vol. 163(C), pages 987-1000.
    5. Hongliang Wang & Bing Long & Chuan Wang & Chen Han & Linjian Li, 2020. "Effects of the Impeller Blade with a Slot Structure on the Centrifugal Pump Performance," Energies, MDPI, vol. 13(7), pages 1-17, April.
    6. Mu, Tong & Zhang, Rui & Xu, Hui & Zheng, Yuan & Fei, Zhaodan & Li, Jinghong, 2020. "Study on improvement of hydraulic performance and internal flow pattern of the axial flow pump by groove flow control technology," Renewable Energy, Elsevier, vol. 160(C), pages 756-769.
    7. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    8. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    9. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    10. Cao, Puyu & Zhu, Rui & Yin, Gang, 2021. "Spike-type disturbances due to inlet distortion in a centrifugal pump," Renewable Energy, Elsevier, vol. 165(P1), pages 288-300.
    11. Lei, Shuaihao & Cheng, Li & Yang, Weixing & Xu, Wentao & Yu, Lei & Luo, Can & Jiao, Weixuan & Shen, Jiantao, 2024. "Dynamic multiscale pressure fluctuation features extraction of mixed-flow pump as turbine (PAT) and flow state recognition of the outlet passage using variational mode decomposition and refined compos," Energy, Elsevier, vol. 305(C).
    12. Zhiyan Yang & Yongguang Cheng & Ke Liu & Xiaoxia Hou & Xiaoxi Zhang & Xi Wang & Jinghuan Ding, 2021. "Three-Dimensional CFD Simulations of Start-Up Processes of a Pump-Turbine Considering Governor Regulation," Energies, MDPI, vol. 14(24), pages 1-19, December.
    13. Kan, Kan & Xu, Zhe & Chen, Huixiang & Xu, Hui & Zheng, Yuan & Zhou, Daqing & Muhirwa, Alexis & Maxime, Binama, 2022. "Energy loss mechanisms of transition from pump mode to turbine mode of an axial-flow pump under bidirectional conditions," Energy, Elsevier, vol. 257(C).
    14. Wang, Chaoyue & Wang, Benhong & Wang, Fujun & Wang, Hao & Hong, Yiping & Wu, Jie & Li, Dianji & Shao, Chunbing, 2024. "On the scale effect of energy conversion in large-scale bulb tubular pump: Characteristics, mechanisms and applications," Energy, Elsevier, vol. 292(C).
    15. Pu, Kexin & Huang, Bin & Miao, Hongjiang & Shi, Peili & Wu, Dazhuan, 2022. "Quantitative analysis of energy loss and vibration performance in a circulating axial pump," Energy, Elsevier, vol. 243(C).
    16. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    17. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
    18. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    19. Yang, Yang & Wang, Hui & Wang, Chuan & Zhou, Ling & Ji, Leilei & Yang, Yongfei & Shi, Weidong & Agarwal, Ramesh K., 2024. "An entropy efficiency model and its application to energy performance analysis of a multi-stage electric submersible pump," Energy, Elsevier, vol. 288(C).
    20. Zhang, Di & Jiao, Weixuan & Cheng, Li & Xia, Chenzhi & Zhang, Bowen & Luo, Can & Wang, Chuan, 2021. "Experimental study on the evolution process of the roof-attached vortex of the closed sump," Renewable Energy, Elsevier, vol. 164(C), pages 1029-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6395-:d:650883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.