Effect mechanism of cavitation on the hump characteristic of a pump-turbine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.11.095
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
- Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
- Qian, Zhongdong & Wang, Fan & Guo, Zhiwei & Lu, Jie, 2016. "Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode," Renewable Energy, Elsevier, vol. 99(C), pages 1146-1152.
- Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2018. "Cavitation behavior study in the pump mode of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 125(C), pages 655-667.
- Lu, Guocheng & Zuo, Zhigang & Sun, Yuekun & Liu, Demin & Tsujimoto, Yoshinobu & Liu, Shuhong, 2017. "Experimental evidence of cavitation influences on the positive slope on the pump performance curve of a low specific speed model pump-turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1539-1550.
- Gohil, Pankaj P. & Saini, R.P., 2015. "Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant," Energy, Elsevier, vol. 93(P1), pages 613-624.
- Tao, Ran & Xiao, Ruofu & Wang, Fujun & Liu, Weichao, 2019. "Improving the cavitation inception performance of a reversible pump-turbine in pump mode by blade profile redesign: Design concept, method and applications," Renewable Energy, Elsevier, vol. 133(C), pages 325-342.
- Deyou Li & Hongjie Wang & Jinxia Chen & Torbjørn K. Nielsen & Daqing Qin & Xianzhu Wei, 2016. "Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model," Energies, MDPI, vol. 9(8), pages 1-18, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
- Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
- Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
- Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
- Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
- Zhao, Yuanqi & Li, Deyou & Chang, Hong & Fu, Xiaolong & Wang, Hongjie & Qin, Daqing, 2023. "Suppression effect of bionic guide vanes with different parameters on the hump characteristics of pump-turbines based on entropy production theory," Energy, Elsevier, vol. 283(C).
- Yonglin Qin & Deyou Li & Hongjie Wang & Xianzhu Wei, 2023. "Optimization of Setting Angle Distribution to Suppress Hump Characteristic in Pump Turbine," Energies, MDPI, vol. 16(5), pages 1-18, March.
- Lijian Shi & Jun Zhu & Li Wang & Shiji Chu & Fangping Tang & Yan Jin, 2021. "Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction," Energies, MDPI, vol. 14(19), pages 1-18, October.
- Zhiyan Yang & Yongguang Cheng & Ke Liu & Xiaoxia Hou & Xiaoxi Zhang & Xi Wang & Jinghuan Ding, 2021. "Three-Dimensional CFD Simulations of Start-Up Processes of a Pump-Turbine Considering Governor Regulation," Energies, MDPI, vol. 14(24), pages 1-19, December.
- Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
- Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
- Zhu, Di & Xiao, Ruofu & Liu, Weichao, 2021. "Influence of leading-edge cavitation on impeller blade axial force in the pump mode of reversible pump-turbine," Renewable Energy, Elsevier, vol. 163(C), pages 939-949.
- Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
- Zhu, Di & Tao, Ran & Xiao, Ruofu & Pan, Litan, 2020. "Solving the runner blade crack problem for a Francis hydro-turbine operating under condition-complexity," Renewable Energy, Elsevier, vol. 149(C), pages 298-320.
- Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
- Hong, Sheng & Wu, Yuping & Wu, Jianhua & Zhang, Yuquan & Zheng, Yuan & Li, Jiahui & Lin, Jinran, 2021. "Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines," Renewable Energy, Elsevier, vol. 164(C), pages 1089-1099.
- Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
- Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
- Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
- Pang, Shujiao & Zhu, Baoshan & Shen, Yunde & Chen, Zhenmu, 2024. "Study on suppression of cavitating vortex rope on pump-turbines by J-groove," Applied Energy, Elsevier, vol. 360(C).
- Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
- Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
- Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
- Liu, Demin & Zhang, Xiaoxi & Yang, Zhiyan & Liu, Ke & Cheng, Yongguang, 2021. "Evaluating the pressure fluctuations during load rejection of two pump-turbines in a prototype pumped-storage system by using 1D-3D coupled simulation," Renewable Energy, Elsevier, vol. 171(C), pages 1276-1289.
- Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
- Zhang, Hao & Guo, Pengcheng & Sun, Longgang, 2020. "Transient analysis of a multi-unit pumped storage system during load rejection process," Renewable Energy, Elsevier, vol. 152(C), pages 34-43.
- Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
- Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
- Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
More about this item
Keywords
Pump-turbine; Cavitation; Hump characteristic; Numerical simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:369-383. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.