IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6057-d641294.html
   My bibliography  Save this article

Challenges in All-DC Offshore Wind Power Plants

Author

Listed:
  • Alessandra Follo

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark
    Department of Electric Power Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Oscar Saborío-Romano

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Elisabetta Tedeschi

    (Department of Electric Power Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
    Department of Industrial Engineering, University of Trento, 38123 Povo, Italy)

  • Nicolaos A. Cutululis

    (Department of Wind Energy, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

As the size and distance from shore of new offshore wind power plants (OWPPs) increase, connection to shore using high-voltage (HV) direct-current (DC) technology becomes more cost-effective. Currently, every offshore wind power plant has a collection system based on medium-voltage alternating-current technology. Such systems rely on heavy and bulky low-frequency (i.e., 50 or 60 Hz) transformers: a drawback offshore, where equipment weight and space are restricted. Consequently, there is growing interest in medium-voltage direct-current collection systems, in which low-frequency transformers are replaced with DC/DC converters equipped with lighter and smaller medium-frequency transformers. However, the deployment of all-DC OWPPs still faces several challenges. Based on a very comprehensive and critical literature review, three of them are identified and discussed in this paper. The first challenge is the technological gap at component level. In this work, the DC/DC converter topologies most suitable for application to OWPPs are described and compared. The second challenge is the controllability of DC collection systems. Parallel, series and hybrid DC collection system layouts are presented and discussed. The third challenge is the compliance of all-DC OWPPs with current requirements for their connection to the onshore grids. The three challenges are discussed to highlight current research gaps and potential future directions.

Suggested Citation

  • Alessandra Follo & Oscar Saborío-Romano & Elisabetta Tedeschi & Nicolaos A. Cutululis, 2021. "Challenges in All-DC Offshore Wind Power Plants," Energies, MDPI, vol. 14(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6057-:d:641294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    2. De Prada Gil, Mikel & Domínguez-García, J.L. & Díaz-González, F. & Aragüés-Peñalba, M. & Gomis-Bellmunt, Oriol, 2015. "Feasibility analysis of offshore wind power plants with DC collection grid," Renewable Energy, Elsevier, vol. 78(C), pages 467-477.
    3. Sheng Jie Shao & Vassilios G. Agelidis, 2010. "Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids," Energies, MDPI, vol. 3(6), pages 1-17, June.
    4. Robles, Eider & Haro-Larrode, Marta & Santos-Mugica, Maider & Etxegarai, Agurtzane & Tedeschi, Elisabetta, 2019. "Comparative analysis of European grid codes relevant to offshore renewable energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 171-185.
    5. Madariaga, A. & Martín, J.L. & Zamora, I. & Martínez de Alegría, I. & Ceballos, S., 2013. "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhonghuan Su & Longfu Luo & Jun Liu & Zhongxiang Li & Hu Luo & Peng Zhao, 2022. "Study of the Harmonic Analysis and Energy Transmission Mechanism of the Frequency Conversion Transformer," Energies, MDPI, vol. 15(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    2. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    3. Martinez, A. & Iglesias, G., 2022. "Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    5. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    6. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    7. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Haipeng Xie & Zhaohong Bie & Yanling Lin & Chao Zheng, 2017. "A Hybrid Reliability Evaluation Method for Meshed VSC-HVDC Grids," Energies, MDPI, vol. 10(7), pages 1-17, July.
    9. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    10. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.
    11. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    12. Asad Rehman & Mohsin Ali Koondhar & Zafar Ali & Munawar Jamali & Ragab A. El-Sehiemy, 2023. "Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    13. Rodrigo Teixeira Pinto & Sílvio Fragoso Rodrigues & Edwin Wiggelinkhuizen & Ricardo Scherrer & Pavol Bauer & Jan Pierik, 2012. "Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms," Energies, MDPI, vol. 6(1), pages 1-26, December.
    14. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    15. Felipe M. Pimenta & Allan R. Silva & Arcilan T. Assireu & Vinicio de S. e Almeida & Osvaldo R. Saavedra, 2019. "Brazil Offshore Wind Resources and Atmospheric Surface Layer Stability," Energies, MDPI, vol. 12(21), pages 1-21, November.
    16. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    17. Gorenstein Dedecca, João & Hakvoort, Rudi A. & Herder, Paulien M., 2017. "Transmission expansion simulation for the European Northern Seas offshore grid," Energy, Elsevier, vol. 125(C), pages 805-824.
    18. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    19. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Silva, Allan Rodrigues & Pimenta, Felipe Mendonça & Assireu, Arcilan Trevenzoli & Spyrides, Maria Helena Constantino, 2016. "Complementarity of Brazil׳s hydro and offshore wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 413-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6057-:d:641294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.