IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2801-d176431.html
   My bibliography  Save this article

A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid

Author

Listed:
  • Sadiq Ahmad

    (Department of Electrical & Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan)

  • Ayaz Ahmad

    (Department of Electrical & Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan)

  • Muhammad Naeem

    (Department of Electrical & Computer Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantonment 47040, Pakistan)

  • Waleed Ejaz

    (Department of Applied Science & Engineering, Thompson Rivers University (TRU), Kamloops, BC V2C 0C8, Canada)

  • Hyung Seok Kim

    (Department of Information & Communication Engineering, Sejong University, Seoul 143 747, Korea)

Abstract

The curtailing of consumers’ peak hours demands and filling the gap caused by the mismatch between generation and utilization in power systems is a challenging task and also a very hot topic in the current research era. Researchers of the conventional power grid in the traditional power setup are confronting difficulties to figure out the above problem. Smart grid technology can handle these issues efficiently. In the smart grid, consumer demand can be efficiently managed and handled by employing demand-side management (DSM) algorithms. In general, DSM is an important element of smart grid technology. It can shape the consumers’ electricity demand curve according to the given load curve provided by the utilities/supplier. In this survey, we focused on DSM and potential applications of DSM in the smart grid. The review in this paper focuses on the research done over the last decade, to discuss the key concepts of DSM schemes employed for consumers’ demand management. We review DSM schemes under various categories, i.e., direct load reduction, load scheduling, DSM based on various pricing schemes, DSM based on optimization types, DSM based on various solution approaches, and home energy management based DSM. A comprehensive review of DSM performance metrics, optimization objectives, and solution methodologies is’ also provided in this survey. The role of distributed renewable energy resources (DERs) in achieving the optimization objectives and performance metrics is also revealed. The unpredictable nature of DERs and their impact on DSM are also exposed. The motivation of this paper is to contribute by providing a better understanding of DSM and the usage of DERs that can satisfy consumers’ electricity demand with efficient scheduling to achieve the performance metrics and optimization objectives.

Suggested Citation

  • Sadiq Ahmad & Ayaz Ahmad & Muhammad Naeem & Waleed Ejaz & Hyung Seok Kim, 2018. "A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid," Energies, MDPI, vol. 11(10), pages 1-33, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2801-:d:176431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    2. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    3. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    6. Cassandra L. Thiel & Nicole Campion & Amy E. Landis & Alex K. Jones & Laura A. Schaefer & Melissa M. Bilec, 2013. "A Materials Life Cycle Assessment of a Net-Zero Energy Building," Energies, MDPI, vol. 6(2), pages 1-17, February.
    7. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    8. Amna Malik & Zain Ali & Ahmed Bilal Awan & Ahmed G. Abo-Khalil & Guftaar Ahmad Sardar Sidhu, 2018. "Achieving Cost Minimization and Fairness in Multi-Supplier Smart Grid Environment," Energies, MDPI, vol. 11(6), pages 1-17, May.
    9. Jalali, Mohammad Majid & Kazemi, Ahad, 2015. "Demand side management in a smart grid with multiple electricity suppliers," Energy, Elsevier, vol. 81(C), pages 766-776.
    10. Vasconcelos & Jorge, 2008. "Survey of Regulatory and Technological Developments Concerning Smart Metering in the European Union Electricity Market," EUI-RSCAS Working Papers 1, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
    11. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    12. Reka, S. Sofana & Dragicevic, Tomislav, 2018. "Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 90-108.
    13. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    14. Hartway, Rob & Price, Snuller & Woo, C.K, 1999. "Smart meter, customer choice and profitable time-of-use rate option," Energy, Elsevier, vol. 24(10), pages 895-903.
    15. Gomez-Herrera, Juan A. & Anjos, Miguel F., 2018. "Optimal collaborative demand-response planner for smart residential buildings," Energy, Elsevier, vol. 161(C), pages 370-380.
    16. Eunice Espe & Vidyasagar Potdar & Elizabeth Chang, 2018. "Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and Future Directions," Energies, MDPI, vol. 11(10), pages 1-24, September.
    17. Shi, Huaizhou & Blaauwbroek, Niels & Nguyen, Phuong H. & Kamphuis, René (I.G.), 2016. "Energy management in Multi-Commodity Smart Energy Systems with a greedy approach," Applied Energy, Elsevier, vol. 167(C), pages 385-396.
    18. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    19. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    20. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    21. Sanya Carley, 2012. "Energy demand‐side management: New perspectives for a new era," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 31(1), pages 6-32, December.
    22. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.
    23. Paul Simshauser & David Downer, 2012. "Dynamic Pricing and the Peak Electricity Load Problem," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 45(3), pages 305-324, September.
    24. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum residential load management strategy for real time pricing (RTP) demand response programs," Energy Policy, Elsevier, vol. 45(C), pages 671-679.
    25. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    26. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    27. Naveed Ul Hassan & Muhammad Adeel Pasha & Chau Yuen & Shisheng Huang & Xiumin Wang, 2013. "Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System," Energies, MDPI, vol. 6(12), pages 1-28, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moonjeong Lee & Myungseok Yoon & Jintae Cho & Sungyun Choi, 2022. "Probabilistic Stability Evaluation Based on Confidence Interval in Distribution Systems with Inverter-Based Distributed Generations," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    2. Juan Carlos Oviedo Cepeda & German Osma-Pinto & Robin Roche & Cesar Duarte & Javier Solano & Daniel Hissel, 2020. "Design of a Methodology to Evaluate the Impact of Demand-Side Management in the Planning of Isolated/Islanded Microgrids," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Naoui Mohamed & Flah Aymen & Abdullah Altamimi & Zafar A. Khan & Sbita Lassaad, 2022. "Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    4. Sathesh Murugan & Mohana Jaishankar & Kamaraj Premkumar, 2022. "Hybrid DC–AC Microgrid Energy Management System Using an Artificial Gorilla Troops Optimizer Optimized Neural Network," Energies, MDPI, vol. 15(21), pages 1-19, November.
    5. Abedrabboh, Khaled & Al-Fagih, Luluwah, 2023. "Applications of mechanism design in market-based demand-side management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Deng, Xinchen & Wang, Feng & Lin, Xianke & Hu, Bing & Arash, Khalatbarisoltan & Hu, Xiaosong, 2022. "Distributed energy management of home-vehicle Nexus with Stationary battery energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.
    8. Fathy, Ahmed, 2023. "Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles," Applied Energy, Elsevier, vol. 334(C).
    9. Filipe Quintal & Daniel Garigali & Dino Vasconcelos & Jonathan Cavaleiro & Wilson Santos & Lucas Pereira, 2021. "Energy Monitoring in the Wild: Platform Development and Lessons Learned from a Real-World Demonstrator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    10. Tianli Song & Yang Li & Xiao-Ping Zhang & Jianing Li & Cong Wu & Qike Wu & Beibei Wang, 2018. "A Cluster-Based Baseline Load Calculation Approach for Individual Industrial and Commercial Customer," Energies, MDPI, vol. 12(1), pages 1-17, December.
    11. Khan, Saad Salman & Ahmad, Sadiq & Naeem, Muhammad, 2023. "On-grid joint energy management and trading in uncertain environment," Applied Energy, Elsevier, vol. 330(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    2. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    3. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    4. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    5. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    6. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    7. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    8. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    10. Eunjung Lee & Keon Baek & Jinho Kim, 2020. "Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach," Energies, MDPI, vol. 13(23), pages 1-12, December.
    11. Fridgen, Gilbert & Keller, Robert & Thimmel, Markus & Wederhake, Lars, 2017. "Shifting load through space–The economics of spatial demand side management using distributed data centers," Energy Policy, Elsevier, vol. 109(C), pages 400-413.
    12. Ambrosius, Mirjam & Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2018. "Investment incentives for flexible demand options under different market designs," Energy Policy, Elsevier, vol. 118(C), pages 372-389.
    13. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    14. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    15. Yilmaz, S. & Rinaldi, A. & Patel, M.K., 2020. "DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?," Energy Policy, Elsevier, vol. 139(C).
    16. Bertsch, Valentin & Harold, Jason & Fell, Harrison, 2019. "Consumer preferences for end-use specific curtailable electricity contracts on household appliances during peak load hours," Papers WP632, Economic and Social Research Institute (ESRI).
    17. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    18. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    19. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    20. Sofana Reka. S & Tomislav Dragičević & Pierluigi Siano & S.R. Sahaya Prabaharan, 2019. "Future Generation 5G Wireless Networks for Smart Grid: A Comprehensive Review," Energies, MDPI, vol. 12(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2801-:d:176431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.