IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic30.html
   My bibliography  Save this article

Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence

Author

Listed:
  • Valor, Carmen
  • Escudero, Carmen
  • Labajo, Victoria
  • Cossent, Rafael

Abstract

Demand-side management is widely considered a key tool to achieving decarbonization in the energy sector. In this regard, providing end users with detailed information about their consumption patterns enables them to make informed decisions to reduce or adapt their energy consumption. This requires the deployment of interactive feedback technologies such as domestic energy displays, dedicated apps/web portals, or ambient interfaces. Extensive research and numerous pilot projects have examined the effects of these technologies on end-user behavior and identified the importance of an appropriate device design to achieve the desired demand response. However, a clear framework for designing these feedback technologies to ensure the desired behavioral change does not exist.

Suggested Citation

  • Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:30
    DOI: 10.1016/j.rser.2019.109301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211930509X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Geelen, Daphne & Reinders, Angèle & Keyson, David, 2013. "Empowering the end-user in smart grids: Recommendations for the design of products and services," Energy Policy, Elsevier, vol. 61(C), pages 151-161.
    3. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    4. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    5. Ian Ayres & Sophie Raseman & Alice Shih, 2013. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 29(5), pages 992-1022, October.
    6. Burgess, Jacquelin & Nye, Michael, 2008. "Re-materialising energy use through transparent monitoring systems," Energy Policy, Elsevier, vol. 36(12), pages 4454-4459, December.
    7. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    8. Shariatzadeh, Farshid & Mandal, Paras & Srivastava, Anurag K., 2015. "Demand response for sustainable energy systems: A review, application and implementation strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 343-350.
    9. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    10. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    11. Alexa Spence & Wouter Poortinga & Nick Pidgeon, 2012. "The Psychological Distance of Climate Change," Risk Analysis, John Wiley & Sons, vol. 32(6), pages 957-972, June.
    12. Asensio, Omar Isaac & Delmas, Magali A., 2016. "The dynamics of behavior change: Evidence from energy conservation," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 196-212.
    13. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    14. Matsui, Kanae & Ochiai, Hideya & Yamagata, Yoshiki, 2014. "Feedback on electricity usage for home energy management: A social experiment in a local village of cold region," Applied Energy, Elsevier, vol. 120(C), pages 159-168.
    15. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    16. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    17. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    18. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    19. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    20. Vassileva, Iana & Dahlquist, Erik & Wallin, Fredrik & Campillo, Javier, 2013. "Energy consumption feedback devices’ impact evaluation on domestic energy use," Applied Energy, Elsevier, vol. 106(C), pages 314-320.
    21. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    22. Krishnamurti, Tamar & Davis, Alexander L. & Wong-Parodi, Gabrielle & Wang, Jack & Canfield, Casey, 2013. "Creating an in-home display: Experimental evidence and guidelines for design," Applied Energy, Elsevier, vol. 108(C), pages 448-458.
    23. McCalley, L. T. & Midden, Cees J. H., 2002. "Energy conservation through product-integrated feedback: The roles of goal-setting and social orientation," Journal of Economic Psychology, Elsevier, vol. 23(5), pages 589-603, October.
    24. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    25. Schleich, Joachim & Klobasa, Marian & Gölz, Sebastian & Brunner, Marc, 2013. "Effects of feedback on residential electricity demand—Findings from a field trial in Austria," Energy Policy, Elsevier, vol. 61(C), pages 1097-1106.
    26. Johnson, Daniel & Horton, Ella & Mulcahy, Rory & Foth, Marcus, 2017. "Gamification and serious games within the domain of domestic energy consumption: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 249-264.
    27. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    28. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    29. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    30. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    31. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    32. Simcock, Neil & MacGregor, Sherilyn & Catney, Philip & Dobson, Andrew & Ormerod, Mark & Robinson, Zoe & Ross, Simon & Royston, Sarah & Marie Hall, Sarah, 2014. "Factors influencing perceptions of domestic energy information: Content, source and process," Energy Policy, Elsevier, vol. 65(C), pages 455-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carol Vigurs & Chris Maidment & Michael Fell & David Shipworth, 2021. "Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review," Energies, MDPI, vol. 14(5), pages 1-33, February.
    2. Lisa Diamond & Alexander Mirnig & Peter Fröhlich, 2023. "Encouraging Trust in Demand-Side Management via Interaction Design: An Automation Level Based Trust Framework," Energies, MDPI, vol. 16(5), pages 1-31, March.
    3. Maria LopezDeAsiain & Vicente Díaz-García, 2020. "The Importance of the Participatory Dimension in Urban Resilience Improvement Processes," Sustainability, MDPI, vol. 12(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    2. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    3. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
    4. David Fredericks & Zhong Fan & Sandra Woolley & Ed de Quincey & Mike Streeton, 2020. "A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups," Energies, MDPI, vol. 13(10), pages 1-17, May.
    5. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    6. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    7. Ian H. Rowlands & Tobi Reid & Paul Parker, 2015. "Research with disaggregated electricity end‐use data in households: review and recommendations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 383-396, September.
    8. Guo, Zhifeng & Zhou, Kaile & Zhang, Chi & Lu, Xinhui & Chen, Wen & Yang, Shanlin, 2018. "Residential electricity consumption behavior: Influencing factors, related theories and intervention strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 399-412.
    9. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    10. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    11. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
    13. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    14. Mi, Lingyun & Gan, Xiaoli & Sun, Yuhuan & Lv, Tao & Qiao, Lijie & Xu, Ting, 2021. "Effects of monetary and nonmonetary interventions on energy conservation: A meta-analysis of experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Foulds, Chris & Robison, Rosalyn A.V. & Macrorie, Rachel, 2017. "Energy monitoring as a practice: Investigating use of the iMeasure online energy feedback tool," Energy Policy, Elsevier, vol. 104(C), pages 194-202.
    16. Sloot, Daniel & Scheibehenne, Benjamin, 2022. "Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Kathryn Buchanan & Riccardo Russo, 2019. "Money doesn’t matter! Householders’ intentions to reduce standby power are unaffected by personalised pecuniary feedback," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
    18. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
    19. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    20. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.