IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5676-d632219.html
   My bibliography  Save this article

A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition

Author

Listed:
  • Girolama Airò Farulla

    (Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy)

  • Giovanni Tumminia

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

  • Francesco Sergi

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

  • Davide Aloisio

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

  • Maurizio Cellura

    (Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy
    Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

  • Vincenzo Antonucci

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

  • Marco Ferraro

    (Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Consiglio Nazionale delle Ricerche, 98126 Messina, Italy)

Abstract

The transition to a sustainable society and a carbon-neutral economy by 2050 requires extensive deployment of renewable energy sources that, due to the aleatority and non-programmability of most of them, may seriously affect the stability of existing power grids. In this context, buildings are increasingly being seen as a potential source of energy flexibility for the power grid. In literature, key performance indicators, allowing different aspects of the load management, are used to investigate buildings’ energy flexibility. The paper reviews existing indicators developed in the context of theoretical, experimental and numerical studies on flexible buildings, outlining the current status and the potential future perspective. Moreover, the paper briefly reviews the range of grid services that flexible buildings can provide to support the reliability of the electric power system which is potentially challenged by the increasing interconnection of distributed variable renewable generation.

Suggested Citation

  • Girolama Airò Farulla & Giovanni Tumminia & Francesco Sergi & Davide Aloisio & Maurizio Cellura & Vincenzo Antonucci & Marco Ferraro, 2021. "A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition," Energies, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5676-:d:632219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    2. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awan, Muhammad Bilal & Sun, Yongjun & Lin, Wenye & Ma, Zhenjun, 2023. "A framework to formulate and aggregate performance indicators to quantify building energy flexibility," Applied Energy, Elsevier, vol. 349(C).
    2. Rafael E. Carrillo & Antonis Peppas & Yves Stauffer & Chrysa Politi & Tomasz Gorecki & Pierre-Jean Alet, 2022. "A Multilevel Control Approach to Exploit Local Flexibility in Districts Evaluated under Real Conditions," Energies, MDPI, vol. 15(16), pages 1-17, August.
    3. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    4. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    5. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Harun Or Rashid Howlader & Akito Nakadomari & Tomonobu Senjyu, 2023. "Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies," Energies, MDPI, vol. 16(10), pages 1-25, May.
    6. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Victor José del Campo Díaz & Koldobika Martin Escudero, 2020. "Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope," Energies, MDPI, vol. 13(14), pages 1-14, July.
    3. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    4. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    6. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    7. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    8. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    9. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    10. Dominik Franjo Dominković & Goran Krajačić, 2019. "District Cooling Versus Individual Cooling in Urban Energy Systems: The Impact of District Energy Share in Cities on the Optimal Storage Sizing," Energies, MDPI, vol. 12(3), pages 1-21, January.
    11. Mimica, Marko & Dominković, Dominik F. & Kirinčić, Vedran & Krajačić, Goran, 2022. "Soft-linking of improved spatiotemporal capacity expansion model with a power flow analysis for increased integration of renewable energy sources into interconnected archipelago," Applied Energy, Elsevier, vol. 305(C).
    12. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    14. Dominković, Dominik Franjo & Junker, Rune Grønborg & Lindberg, Karen Byskov & Madsen, Henrik, 2020. "Implementing flexibility into energy planning models: Soft-linking of a high-level energy planning model and a short-term operational model," Applied Energy, Elsevier, vol. 260(C).
    15. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    16. Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2020. "Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit," Energy, Elsevier, vol. 210(C).
    17. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin Marian, 2021. "European union's regions between cohesion and sustainability," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Sun-Hye Mun & Younghoon Kwak & Jung-Ho Huh, 2021. "Influence of Complex Occupant Behavior Models on Cooling Energy Usage Analysis," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    19. Antonija Ana Wieser & Marco Scherz & Alexander Passer & Helmuth Kreiner, 2021. "Challenges of a Healthy Built Environment: Air Pollution in Construction Industry," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    20. Andiappan, Viknesh, 2022. "Optimization of smart energy systems based on response time and energy storage losses," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5676-:d:632219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.