IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3731-d387013.html
   My bibliography  Save this article

Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope

Author

Listed:
  • Joan Manuel Felix Benitez

    (ENEDI Research Group, Thermal Engineering Department, University of the Basque country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain
    Directorate of Scientific Research Management, East Central University (UCE), 21000 San Pedro de Macorís, Dominican Republic)

  • Luis Alfonso del Portillo-Valdés

    (ENEDI Research Group, Thermal Engineering Department, University of the Basque country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain)

  • Victor José del Campo Díaz

    (ENEDI Research Group, Thermal Engineering Department, University of the Basque country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain)

  • Koldobika Martin Escudero

    (ENEDI Research Group, Thermal Engineering Department, University of the Basque country (UPV/EHU), 48013 Bilbao, Bizkaia, Spain)

Abstract

The improvement of the energy performance in buildings is key for sustainable development, even more so in the case of the Dominican Republic (DR), which is committed to this goal but which has neither regulation nor specific social behavior in this field. The main goal of this work is double; on one hand it is aimed at providing useable information for those who have the responsibly of making regulation norms and on the other, it is desirable to give an essential, technically proven and handy tool to those involved in the construction sector in improving the envelopes of buildings and to introduce good practices into the management of the energy systems of buildings. A case study of eight administrative buildings located in different climatic zones of the DR was carried out. A simulation tool was used for the study, and one of the buildings was monitored to verify the simulation work. Those factors that affect the development of the buildings in relation to thermo-energy consumption have been detailed. The large-scale heat gains resulting from the common glazing used by the tertiary sector in the Dominican Republic (including office buildings, hospitals and shops among others) illustrate the need for economically viable solutions in this sector. As a conclusion, it has been proved that the incidental thermal load of buildings could be reduced by up to 40%, thus in turn reducing the costs associated with the electricity needed to maintain the users’ desired thermal comfort level, as their influence in this sector is significant.

Suggested Citation

  • Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Victor José del Campo Díaz & Koldobika Martin Escudero, 2020. "Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope," Energies, MDPI, vol. 13(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3731-:d:387013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    2. Eguía Oller, Pablo & Alonso Rodríguez, José María & Saavedra González, Ángeles & Arce Fariña, Elena & Granada Álvarez, Enrique, 2018. "Improving the calibration of building simulation with interpolated weather datasets," Renewable Energy, Elsevier, vol. 122(C), pages 608-618.
    3. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Data fusion in predicting internal heat gains for office buildings through a deep learning approach," Applied Energy, Elsevier, vol. 240(C), pages 386-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Rene Pérez & David Sosa, 2022. "Methodology to Determine Energy Efficiency Strategies in Buildings Sited in Tropical Climatic Zones; Case Study, Buildings of the Tertiary Sector in the Dominican Republic," Energies, MDPI, vol. 15(13), pages 1-31, June.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    4. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.
    5. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    7. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    8. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    9. Blum, David & Wang, Zhe & Weyandt, Chris & Kim, Donghun & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Field demonstration and implementation analysis of model predictive control in an office HVAC system," Applied Energy, Elsevier, vol. 318(C).
    10. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    11. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    12. Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
    13. Zhang, Chengyu & Ma, Liangdong & Han, Xing & Zhao, Tianyi, 2024. "Reconstituted data-driven air conditioning energy consumption prediction system employing occupant-orientated probability model as input and swarm intelligence optimization algorithms," Energy, Elsevier, vol. 288(C).
    14. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2021. "Applying the mixed-mode with an adaptive approach to reduce the energy poverty in social dwellings: The case of Spain," Energy, Elsevier, vol. 237(C).
    15. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    16. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Das, Anooshmita & Annaqeeb, Masab Khalid & Azar, Elie & Novakovic, Vojislav & Kjærgaard, Mikkel Baun, 2020. "Occupant-centric miscellaneous electric loads prediction in buildings using state-of-the-art deep learning methods," Applied Energy, Elsevier, vol. 269(C).
    18. Wei, Shuangyu & Tien, Paige Wenbin & Calautit, John Kaiser & Wu, Yupeng & Boukhanouf, Rabah, 2020. "Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method," Applied Energy, Elsevier, vol. 277(C).
    19. Nuno Baía Saraiva & Luisa Dias Pereira & Adélio Rodrigues Gaspar & José Joaquim da Costa, 2021. "Barriers on Establishing Passive Strategies in Office Spaces: A Case Study in a Historic University Building," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    20. Sun-Hye Mun & Younghoon Kwak & Jung-Ho Huh, 2021. "Influence of Complex Occupant Behavior Models on Cooling Energy Usage Analysis," Sustainability, MDPI, vol. 13(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3731-:d:387013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.