IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp733-742.html
   My bibliography  Save this article

Modeling the energy and environmental life cycle of buildings: A co-simulation approach

Author

Listed:
  • Cellura, Maurizio
  • Guarino, Francesco
  • Longo, Sonia
  • Mistretta, Marina

Abstract

Building simulation is currently looking towards interdisciplinary experiences, aiming to the integration of simulation tools in different technical domains. At the same time, the interest of the building community to high performance buildings has also strengthened the interest on Life Cycle performances of such buildings, due to the reduction in their operational stage impacts. In this context, the paper proposes an integration of building simulation and Life Cycle Assessment through the programming of a TRNSYS component. It can perform Life Cycle Assessment studies, while having as output as well energy balances and energy and environmental payback times. Currently, the tool is tailored to calculate the indicators Global energy requirement and Global warming potential, but its flexibility allows to calculate any kind of indicator, if given the right inputs.

Suggested Citation

  • Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:733-742
    DOI: 10.1016/j.rser.2017.05.273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211730919X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beccali, Marco & Cellura, Maurizio & Fontana, Mario & Longo, Sonia & Mistretta, Marina, 2013. "Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 283-293.
    2. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    3. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    4. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    5. Cellura, Maurizio & Longo, Sonia & Mistretta, Marina, 2011. "Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4697-4705.
    6. Geng, Shengnan & Wang, Yuan & Zuo, Jian & Zhou, Zhihua & Du, Huibin & Mao, Guozhu, 2017. "Building life cycle assessment research: A review by bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 176-184.
    7. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Hye Mun & Younghoon Kwak & Jung-Ho Huh, 2021. "Influence of Complex Occupant Behavior Models on Cooling Energy Usage Analysis," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    2. Girolama Airò Farulla & Giovanni Tumminia & Francesco Sergi & Davide Aloisio & Maurizio Cellura & Vincenzo Antonucci & Marco Ferraro, 2021. "A Review of Key Performance Indicators for Building Flexibility Quantification to Support the Clean Energy Transition," Energies, MDPI, vol. 14(18), pages 1-19, September.
    3. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    4. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Victor José del Campo Díaz & Koldobika Martin Escudero, 2020. "Simulation and Thermo-Energy Analysis of Building Types in the Dominican Republic to Evaluate and Introduce Energy Efficiency in the Envelope," Energies, MDPI, vol. 13(14), pages 1-14, July.
    5. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    6. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    7. Filippo G. Praticò & Marinella Giunta & Marina Mistretta & Teresa Maria Gulotta, 2020. "Energy and Environmental Life Cycle Assessment of Sustainable Pavement Materials and Technologies for Urban Roads," Sustainability, MDPI, vol. 12(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    2. Goune Kang & Hunhee Cho & Dongyoun Lee, 2019. "Dynamic Lifecycle Assessment in Building Construction Projects: Focusing on Embodied Emissions," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    3. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2015. "Different energy balances for the redesign of nearly net zero energy buildings: An Italian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 100-112.
    4. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Madelyn Marrero & Maciej Wojtasiewicz & Alejandro Martínez-Rocamora & Jaime Solís-Guzmán & M. Desirée Alba-Rodríguez, 2020. "BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    6. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    7. Jusselme, Thomas & Rey, Emmanuel & Andersen, Marilyne, 2018. "An integrative approach for embodied energy: Towards an LCA-based data-driven design method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 123-132.
    8. Thibodeau, Charles & Bataille, Alain & Sié, Marion, 2019. "Building rehabilitation life cycle assessment methodology–state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 408-422.
    9. José Pedro Carvalho & Ismael Alecrim & Luís Bragança & Ricardo Mateus, 2020. "Integrating BIM-Based LCA and Building Sustainability Assessment," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    10. Mona Abouhamad & Metwally Abu-Hamd, 2020. "Life Cycle Environmental Assessment of Light Steel Framed Buildings with Cement-Based Walls and Floors," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    11. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    12. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    13. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    15. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    16. Pau Fonseca i Casas & Antoni Fonseca i Casas, 2017. "Using Specification and Description Language for Life Cycle Assesment in Buildings," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    17. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    18. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    19. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    20. Lee, Junghun & Kim, Jeonggook & Song, Doosam & Kim, Jonghun & Jang, Cheolyong, 2017. "Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1081-1088.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:733-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.