IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5659-d631720.html
   My bibliography  Save this article

Event-Based Under-Frequency Load Shedding Scheme in a Standalone Power System

Author

Listed:
  • Ying-Yi Hong

    (Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan)

  • Chih-Yang Hsiao

    (Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan)

Abstract

Under-frequency load shedding (UFLS) prevents a power grid from a blackout when a severe contingency occurs. UFLS schemes can be classified into two categories—event-based and response-driven. A response-driven scheme utilizes 81L relays with pre-determined settings while an event-based scheme develops a pre-specified look-up table. In this work, an event-based UFLS scheme is presented for use in an offshore standalone power grid with renewables to avoid cascading outages due to low frequency protection of wind power generators and photovoltaic arrays. Possible “N-1” and “N-2” forced outages for peak and off-peak load scenarios in summer and winter are investigated. For each forced outage event, the total shed load is minimized and the frequency nadir is maximized using particle swarm optimization (PSO). In order to reduce the computation time, initialization and parallel computing are implemented using MATLAB/Simulink because all forced outage events and all particles in PSO are mutually independent. A standalone 38-bus power grid with two wind turbines of 2 × 2 MW and photovoltaics of 7.563 MW was studied. For each event, the proposed method generally obtains a result with a smaller shed load and a smaller overshoot frequency than the utility and existing methods. These simulation results verify that the proposed method is practically applicable in a standalone power system with penetration of renewables.

Suggested Citation

  • Ying-Yi Hong & Chih-Yang Hsiao, 2021. "Event-Based Under-Frequency Load Shedding Scheme in a Standalone Power System," Energies, MDPI, vol. 14(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5659-:d:631720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khezri, Rahmat & Golshannavaz, Sajjad & Vakili, Ramin & Memar-Esfahani, Bahram, 2017. "Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids," Energy, Elsevier, vol. 132(C), pages 96-105.
    2. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    3. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    4. Martha N. Acosta & Choidorj Adiyabazar & Francisco Gonzalez-Longatt & Manuel A. Andrade & José Rueda Torres & Ernesto Vazquez & Jesús Manuel Riquelme Santos, 2020. "Optimal Under-Frequency Load Shedding Setting at Altai-Uliastai Regional Power System, Mongolia," Energies, MDPI, vol. 13(20), pages 1-18, October.
    5. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin-Constantin Baiceanu & Ovidiu Ivanov & Razvan-Constantin Beniuga & Bogdan-Constantin Neagu & Ciprian-Mircea Nemes, 2023. "A Continuous Multistage Load Shedding Algorithm for Industrial Processes Based on Metaheuristic Optimization," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    2. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    2. Luis Santiago Azuara-Grande & Santiago Arnaltes & Jaime Alonso-Martinez & Jose Luis Rodriguez-Amenedo, 2021. "Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids," Energies, MDPI, vol. 14(20), pages 1-15, October.
    3. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    4. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    5. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    6. Marco Galici & Mario Mureddu & Emilio Ghiani & Fabrizio Pilo, 2022. "Blockchain-Based Hardware-in-the-Loop Simulation of a Decentralized Controller for Local Energy Communities," Energies, MDPI, vol. 15(20), pages 1-25, October.
    7. Rambabu Muppidi & Ramakrishna S. S. Nuvvula & S. M. Muyeen & SK. A. Shezan & Md. Fatin Ishraque, 2022. "Optimization of a Fuel Cost and Enrichment of Line Loadability for a Transmission System by Using Rapid Voltage Stability Index and Grey Wolf Algorithm Technique," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    8. Sheha, Moataz & Mohammadi, Kasra & Powell, Kody, 2021. "Techno-economic analysis of the impact of dynamic electricity prices on solar penetration in a smart grid environment with distributed energy storage," Applied Energy, Elsevier, vol. 282(PA).
    9. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Abdelfettah Kerboua & Fouad Boukli-Hacene & Khaldoon A Mourad, 2020. "Particle Swarm Optimization for Micro-Grid Power Management and Load Scheduling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 71-80.
    11. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Santiago Bustamante-Mesa & Jorge W. Gonzalez-Sanchez & Sergio D. Saldarriaga-Zuluaga & Jesús M. López-Lezama & Nicolás Muñoz-Galeano, 2024. "Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection," Energies, MDPI, vol. 17(2), pages 1-20, January.
    13. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    14. Mahdiyeh Eslami & Mehdi Neshat & Saifulnizam Abd. Khalid, 2022. "A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers," Sustainability, MDPI, vol. 14(1), pages 1-27, January.
    15. Agnieszka Mazurek-Czarnecka & Ksymena Rosiek & Marcin Salamaga & Krzysztof Wąsowicz & Renata Żaba-Nieroda, 2022. "Study on Support Mechanisms for Renewable Energy Sources in Poland," Energies, MDPI, vol. 15(12), pages 1-38, June.
    16. Wang, Jianzhou & Gao, Jialu & Wei, Danxiang, 2022. "Electric load prediction based on a novel combined interval forecasting system," Applied Energy, Elsevier, vol. 322(C).
    17. Zhou, Wenhao & Li, Hailin & Zhang, Zhiwei, 2022. "A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 128-147.
    18. Dimitra G. Kyriakou & Fotios D. Kanellos, 2022. "Optimal Operation of Microgrids Comprising Large Building Prosumers and Plug-in Electric Vehicles Integrated into Active Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-26, August.
    19. Miroslaw Parol & Jacek Wasilewski & Tomasz Wojtowicz & Bartlomiej Arendarski & Przemyslaw Komarnicki, 2022. "Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure," Energies, MDPI, vol. 15(14), pages 1-34, July.
    20. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5659-:d:631720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.