IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2684-d1170252.html
   My bibliography  Save this article

A Continuous Multistage Load Shedding Algorithm for Industrial Processes Based on Metaheuristic Optimization

Author

Listed:
  • Florin-Constantin Baiceanu

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Ovidiu Ivanov

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Razvan-Constantin Beniuga

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Bogdan-Constantin Neagu

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Ciprian-Mircea Nemes

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

Abstract

At complex industrial sites, the high number of large consumers that make the technological process chain requires direct supply from the main high-voltage grid. Often, for operational flexibility and redundancy, the main external supply is complemented with small local generation units. When a contingency occurs in the grid and the main supply is cut off, the local generators are used to keep in operation the critical consumers until the safe shutdown of the entire process can be achieved. In these scenarios, in order to keep the balance between local generation and consumption, the classic approach is to use under-frequency load-shedding schemes. This paper proposes a new load-shedding algorithm that uses particle swarm optimization and forecasted load data to provide a low-cost alternative to under-frequency methods. The algorithm is built using the requirements and input data provided by a real industrial site from Romania. The results show that local generation and critical consumption can be kept in stable operation for the time interval required for the safe shutdown of the running processes.

Suggested Citation

  • Florin-Constantin Baiceanu & Ovidiu Ivanov & Razvan-Constantin Beniuga & Bogdan-Constantin Neagu & Ciprian-Mircea Nemes, 2023. "A Continuous Multistage Load Shedding Algorithm for Industrial Processes Based on Metaheuristic Optimization," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2684-:d:1170252
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura M. Cruz & David L. Alvarez & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Load Curtailment Optimization Using the PSO Algorithm for Enhancing the Reliability of Distribution Networks," Energies, MDPI, vol. 13(12), pages 1-15, June.
    2. Jafar Jallad & Saad Mekhilef & Hazlie Mokhlis & Javed Laghari & Ola Badran, 2018. "Application of Hybrid Meta-Heuristic Techniques for Optimal Load Shedding Planning and Operation in an Islanded Distribution Network Integrated with Distributed Generation," Energies, MDPI, vol. 11(5), pages 1-25, May.
    3. Kai Wang & Lixia Kang & Songhao Yang, 2022. "A Coordination Optimization Method for Load Shedding Considering Distribution Network Reconfiguration," Energies, MDPI, vol. 15(21), pages 1-18, November.
    4. Ying-Yi Hong & Chih-Yang Hsiao, 2021. "Event-Based Under-Frequency Load Shedding Scheme in a Standalone Power System," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Olumuyiwa T. Amusan & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2022. "Identification of Weak Buses for Optimal Load Shedding Using Differential Evolution," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Pijarski & Piotr Kacejko, 2023. "Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources," Energies, MDPI, vol. 16(9), pages 1-19, April.
    2. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
    3. Robert Małkowski & Janusz Nieznański, 2020. "Underfrequency Load Shedding: An Innovative Algorithm Based on Fuzzy Logic," Energies, MDPI, vol. 13(6), pages 1-16, March.
    4. Olumuyiwa T. Amusan & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2022. "Identification of Weak Buses for Optimal Load Shedding Using Differential Evolution," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    5. Ifedayo Oladeji & Ramon Zamora & Tek Tjing Lie, 2021. "An Online Security Prediction and Control Framework for Modern Power Grids," Energies, MDPI, vol. 14(20), pages 1-27, October.
    6. Kuihua Wu & Kun Li & Rong Liang & Runze Ma & Yuxuan Zhao & Jian Wang & Lujie Qi & Shengyuan Liu & Chang Han & Li Yang & Minxiang Huang, 2018. "A Joint Planning Method for Substations and Lines in Distribution Systems Based on the Parallel Bird Swarm Algorithm," Energies, MDPI, vol. 11(10), pages 1-14, October.
    7. Hazwani Mohd Rosli & Hazlie Mokhlis & Nurulafiqah Nadzirah Mansor & Norazliani Md Sapari & Syahirah Abd Halim & Li Wang & Mohamad Fani Sulaima, 2023. "A Binary Archimedes Optimization Algorithm and Weighted Sum Method for UFLS in Islanded Distribution Systems Considering the Stability Index and Load Priority," Energies, MDPI, vol. 16(13), pages 1-21, July.
    8. Julian Garcia-Guarin & David Alvarez & Arturo Bretas & Sergio Rivera, 2020. "Schedule Optimization in a Smart Microgrid Considering Demand Response Constraints," Energies, MDPI, vol. 13(17), pages 1-19, September.
    9. Gugulethu Nogaya & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2022. "Repurposing South Africa’s Retiring Coal-Fired Power Stations for Renewable Energy Generation: A Techno-Economic Analysis," Energies, MDPI, vol. 15(15), pages 1-13, August.
    10. Skrjanc, T. & Mihalic, R. & Rudez, U., 2023. "A systematic literature review on under-frequency load shedding protection using clustering methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    11. Kai Wang & Lixia Kang & Songhao Yang, 2022. "A Coordination Optimization Method for Load Shedding Considering Distribution Network Reconfiguration," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2684-:d:1170252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.